首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plant byproducts of food processing industry line are undervalued yet important resource. These byproducts contain large percentage of high value functional substances such as antioxidants, pectin, polyphenols and so on. Recently, many research studies concentrated on innovative technologies that promise to overcome such issues as time consuming, inefficiency, and low yield, among others, which exist in most conventional techniques. Consequently, to achieve the recovery of nutraceuticals from high added-value by-products, it is necessary to have more knowledge of these novel technologies and more importantly explore the possibility of application of these latest technologies to the recovery downstream processing. The present work will summarize state-of-the-art technological approaches concerning extraction, superfine and drying applied to plant food processing residues. Simultaneously, the application of the bioactive components originated from byproducts in food industry will also be reviewed.  相似文献   

2.
The increase in the use of bioactive compounds from purple corn in the food and pharmaceutical industries has led to the investigation of nonconventional extraction technologies that allow one to obtain more of these compounds. In this context, nonconventional techniques, known as emerging technologies, use more efficient processes that are safe for the environment, in addition to obtaining products with better functional characteristics as compared to those obtained by conventional technologies. This review aims to provide information on different nonconventional techniques used in the extraction of bioactive compounds from purple corn.  相似文献   

3.
The ever-growing cocoa-product market has driven the cocoa industry to massive levels of production, thus causing excessive waste and by-product generation. Cocoa bean shells (CBS) and pod husks (CPH) are the main cocoa-industry by-products that possess substantial amounts of high added-value compounds. Polyphenols may be the most interesting compounds because of their widely known beneficial effects on human health. Over last decade, both science and industry have focused on finding new cost-effective technologies for phytochemical recovery that are able to lower extraction times, energy consumption and environmental impact. Ultrasound, microwave, pulsed electric field, and subcritical and supercritical fluid are some of these technologies. This review summarizes successful CBS and CPH polyphenol extraction processes that make use of the above-mentioned emerging methods. Moreover, the integration of novel business paradigms, in particular the circular economy and industry 4.0, can help sustainability to be achieved in the cocoa industry.Industrial relevance textIndustrial cocoa by-products have become a massive burden since their inadequate disposal leads to a series of environmental issues. Value-added compounds recovery from CBS and CPH by means of enabling technologies assistance can lead to significant economic and environmental advantages. This approach, coherent with circular economy paradigm, can be integrated with a design of Industry 4.0 driving the development of new products and businesses.  相似文献   

4.
ABSTRACT

To date, according to the latest literature inputs, membranes-based technologies (microfiltration, ultrafiltration and nanofiltration) have demonstrated to meet the recovery of biologically active compounds, mainly phenolic compounds and their derivatives, from agro-food products and by-products. The goal of this paper is to provide a critical overview of the on ongoing development works aimed at improving the separation, fractionation and concentration of phenolic compounds and their derivatives from their original sources. The literature data are analyzed and discussed in relation to separation processes, molecule properties, membrane characteristics and key factors affecting the performance of such technologies. Technological advances and improvements over conventional technologies, as well as critical aspects to be further investigated are highlighted and discussed. Finally, a critical outlook about the current status for a large-scale application and the role of these processes from an environmental viewpoint is provided.  相似文献   

5.
Grape byproducts are today considered as a cheap source of valuable compounds since existent technologies allow the recovery of target compounds and their recycling. The goal of the current article is to explore the different recovery stages used by both conventional and alternative techniques and processes. Alternative pre-treatments techniques reviewed are: ultrasounds, pulsed electric fields and high voltage discharges. In addition, nonconventional solvent extraction under high pressure, specifically, supercritical fluid extraction and subcritical water extraction are discussed. Finally alternative purification technologies, for example membrane processing were also examined. The intent is to describe the mechanisms involved by these alternative technologies and to summarize the work done on the improvement of the extraction process of phenolic compounds from winery by-products. With a focus on the developmental stage of each technology, highlighting the research need and challenges to be overcome for an industrial implementation of these unitary operations in the overall extraction process. A critical comparison of conventional and alternative techniques will be reviewed for ethe pre-treatment of raw material, the diffusion of polyphenols and the purification of these high added value compounds. This review intends to give the reader some key answers (costs, advantages, drawbacks) to help in the choice of alternative technologies for extraction purposes.  相似文献   

6.
Abstract

With the growing consumer demands for greener alternatives that do not involve toxic chemicals as well as the industry concerns of sustainable, nontoxic routes of extraction, the applications of novel extraction technologies in the food industry have been widely studied. This review discussed the novel extraction technologies including their mechanisms, protocols, influencing factors, advantages and drawbacks, as well as a comprehensive summary of the combination of the novel extraction technologies for phyto-bioactive compounds. Novel extraction methods, including ultrasound-assisted extraction (UAE), microwave-assisted extraction (MAE) and enzyme-assisted extraction (EAE), are considered as clean, green and efficient alternative to conventional extraction technologies. Their combinations, ultrasound-assisted enzymatic extraction (UAEE), microwave-assisted enzymatic extraction (MAEE) and ultrasonic microwave-assisted extraction (UMAE), can exhibit higher potential extraction ability. However, some of them need specific equipment. The food industry in the extraction sector should choose a proper extraction method which has a balance between product quality, process efficiency, production costs and environmentally friendly processes. The current review presented comprehensive references for future research on the novel extraction of phyto-bioactive compounds extraction.
  1. Highlights
  2. Novel clean, green and efficient alternative to conventional extraction technologies are discussed.

  3. Combination of the novel extraction technologies for synergistic effects.

  4. Minimal degradation and enhanced extraction yields.

  5. Extraction mechanisms, advantages and drawbacks associated with novel extraction technologies.

  相似文献   

7.
8.
《食品工业科技》2013,(01):358-361
苹果是世界上最重要的水果之一,富含多种生物活性物质,具有重要的营养、保健、药用和经济价值。本文综述了苹果生物活性物质的研究和利用现状,包括种类、含量变化及其调控、研究方法、重要功效和科学利用等方面,旨在为研究和利用我国丰富的苹果资源提供信息。   相似文献   

9.
10.
Microorganisms (bacteria, yeast, and microalgae) are a promising resource for products of high value such as nutrients, pigments, and enzymes. The majority of these compounds of interest remain inside the cell, thus making it necessary to extract and purify them before use. This review presents the challenges and opportunities in the production of these compounds, the microbial structure and the location of target compounds in the cells, the different procedures proposed for improving extraction of these compounds, and pulsed electric field (PEF)‐assisted extraction as alternative to these procedures. PEF is a nonthermal technology that produces a precise action on the cytoplasmic membrane improving the selective release of intracellular compounds while avoiding undesirable consequences of heating on the characteristics and purity of the extracts. PEF pretreatment with low energetic requirements allows for high extraction yields. However, PEF parameters should be tailored to each microbial cell, according to their structure, size, and other factors affecting efficiency. Furthermore, the recent discovery of the triggering effect of enzymatic activity during cell incubation after electroporation opens up the possibility of new implementations of PEF for the recovery of compounds that are bounded or assembled in structures. Similarly, PEF parameters and suspension storage conditions need to be optimized to reach the desired effect. PEF can be applied in continuous flow and is adaptable to industrial equipment, making it feasible for scale‐up to large processing capacities.  相似文献   

11.
放线菌尤其是链霉菌是微生物生物活性天然产物的主要产生菌,链霉菌属的很多菌能产生多种抗生素、抗肿瘤药物及酶等重要活性代谢产物,具有广泛的商业和医用开发价值。本文对链霉菌产生的生物活性物质分离纯化方法进行了综述,并对发展趋势进行了展望。   相似文献   

12.
Food waste is a growing problem for the food industry, leading to an increase of pollution and economic problems. Fruits and vegetables are very rich in bioactive compounds having many benefits for humans. These biocompounds can be found not only in the fruit/vegetable itself but also in its wastes, after processing. Nonetheless, the conventional extraction methods are highly problematic, due to solvent consumption, long extraction time, and low extraction yields, making it necessary to develop new extraction techniques. In this review, we aim to review the most recent literature on the extraction of bioactive compounds from fruit peels and seeds, using sub/supercritical fluids, ultrasound, and enzymes.  相似文献   

13.
Among the most important agro-industrial activities in the Mediterranean basin, olive oil production has a high impact on the economy of many Mediterranean countries. However, olive oil extraction generates huge quantities of byproducts, including leaves, pomace residues, stones and wastewater, which have severe environmental impacts mainly because of their phytotoxicity and great organic content. Olive oil byproducts are regarded as inexpensive and abundant raw materials rich in bioactive compounds with high and varied health-related activities. Several phenolic compounds and terpenoids were recovered from olive byproducts using different conventional and advanced extraction methods due to their potential to be used in food, packaging, pharmaceutical, and cosmetic industries. Recently, the use of olive byproducts and their functional compounds to enhance the functional properties of packaging systems was investigated as a sustainable strategy for food preservation, fostering the sustainability of the olive-oil chain, and promoting circular economy. In this framework, the main goals of this review are to summarize the main bioactive compounds in olive byproducts, to review the main advancements in their extraction, purification, and characterization, and finally to discuss their applications in food packaging systems as well as safety-related aspects.  相似文献   

14.
15.
16.
Current demand of consumers for healthy and sustainable food products has led the industry to search for different sources of plant protein isolates and concentrates. Legumes represent an excellent nonanimal protein source with high-protein content. Legume species are distributed in a wide range of ecological conditions, including regions with drought conditions, making them a sustainable crop in a context of global warming. However, their use as human food is limited by the presence of antinutritional factors, such as protease inhibitors, lectins, phytates, and alkaloids, which have adverse nutritional effects. Antitechnological factors, such as fiber, tannins, and lipids, can affect the purity and protein extraction yield. Although most are removed or reduced during alkaline solubilization and isoelectric precipitation processes, some remain in the resulting protein isolates. Selection of appropriate legume genotypes and different emerging and sustainable facilitating technologies, such as high-power ultrasound, pulsed electric fields, high hydrostatic pressure, microwave, and supercritical fluids, can be applied to increase the removal of unwanted compounds. Some technologies can be used to increase protein yield. The technologies can also modify protein structure to improve digestibility, reduce allergenicity, and tune technological properties. This review summarizes recent findings regarding the use of emerging technologies to obtain high-purity protein isolates and the effects on techno-functional properties and health.  相似文献   

17.
Response surface methodology (RSM) is a widely used mathematical and statistical technique for modeling and optimizing the process for the extraction of bioactive compounds. This review explains the optimization approach through the use of experimental design and empirical models for response prediction and the utilization of the desirability function for multiple response optimization. This paper also reviews recent studies on the application of RSM to optimize bioactive compound extraction processes such as conventional solvent extraction, microwave-assisted extraction, supercritical fluid extraction, and ultrasound-assisted extraction. Finally, the challenges associated with the use of RSM and the efforts made to improve RSM in the extraction process are also highlighted. Overall, this review informs many aspects of RSM that are occasionally ignored or insufficiently discussed with regard to the optimization of bioactive compound extraction processes, and it summarizes significant applications where RSM proved suitable. © 2022 Society of Chemical Industry.  相似文献   

18.
Olive oil production yields a substantial volume of by-products, constituting up to 80% of the processed fruits. The olive pomace by-product represents a residue of significant interest due to the diverse bioactive compounds identified in it. However, a thorough characterization and elucidation of the biological activities of olive pomace are imperative to redirect its application for functional food, nutraceutical, and pharmaceutical purposes both for animals and humans. In this review, we examine data from experimental models, including immortalized human vascular endothelial cells, human corneal and conjunctival epithelial cells, human colorectal adenocarcinoma cells, non-tumorigenic human hepatoma cells, and murine macrophages alongside clinical trials. These studies aim to validate the safety, nutritional value, and pharmacological effects of olive pomace. In vitro studies suggest that biophenols extracted from olive pomace possess antioxidant, anti-inflammatory, and antiproliferative properties that could be beneficial in mitigating cardiovascular disorders, particularly atherosclerosis, hepatosteatosis, and dry-eye disease. Protective effects against dry-eye disease were confirmed in a mouse model assay. Olive pomace used in the feed for fish and poultry has demonstrated the ability to enhance animals' immunity and improve nutritional quality of meat and eggs. Human clinical trials are scarce and have revealed minimal biological changes following the consumption of olive pomace-enriched foods. However, alterations in certain biomarkers tentatively suggest cardioprotective properties. The review underscores the value of olive pomace while addressing potential drawbacks and future perspectives, with a specific focus on the need for further investigation into the animal feed and human nutritional properties of olive pomace. © 2024 Society of Chemical Industry.  相似文献   

19.
Olive mill waste (OMW) is a promising source of valuable compounds such as polyphenols, terpenes, sterols, and other bioactive compounds, which are of interest to the pharmaceuticals and cosmeceutical industries. This review examines the potential of OMW extracts for health and beauty applications based on evidence reports from human clinical trials. The results achieved to date indicate health-enhancing properties, but little is known about the underlying mechanisms of action, dose–response relationships, and long-term impacts. Therefore, while olive by-products, extracted using eco-friendly methods, present opportunities for the development of high-value health and cosmetic products, further studies are necessary to determine the full range of their effects and establish specific therapeutic strategies. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.  相似文献   

20.
During the edible oil production process, massive amounts of by-products are generated each year that are not efficiently utilised, posing economic and environmental challenges. Under-utilised products derived from valuable oil-plants such as oil-extracted wheat germ, oil-extracted moringa seed, oil-extracted walnut and flaxseed meal will be increased, and new integration concepts will be required as soon as possible. These underutilised products can be rich sources of phenolic compounds and bioactive peptides with appropriate health-promoting properties such as anti-diabetic, antioxidant, anti-hypertensive, anti-inflammatory, anticancer and antibacterial properties, according to this review. The recovery of bioactive compounds from these by-products can go a long way toward ensuring a sustainable food supply. Current challenges and requirements for recovering bioactive peptides and phenolic compounds from underutilised products derived from valuable oil-plants as well as the relationship between their biological activity and structure are discussed in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号