共查询到20条相似文献,搜索用时 78 毫秒
1.
A high-frequency link series-parallel resonant power converter is analyzed using the state-space approach. Analysis is presented for both the continuous capacitor voltage mode and the discontinuous capacitor voltage mode. Steady-state solutions are derived. Design curves for the converter gain and other component stresses are obtained. A method of optimizing the converter under certain constraints is presented and a simple design procedure is illustrated by a design example. Experimental results are presented to verify the theory 相似文献
2.
Analysis and design of a half-bridge parallel resonant converter 总被引:1,自引:0,他引:1
A half-bridge parallel resonant converter (PRC) is analyzed in detail for both continuous-conduction-mode and discontinuous-conduction-mode operations to provide more straightforward and easy-to-use design tools. Closed-form solutions are derived for the PRC operating under steady-state conditions. Theoretical results obtained are presented in the form of normalized design graphs. They could be directly utilized in designing a half-bridge PRC, having up to 2:1 input voltage variation. They do not necessitate converting the obtained ratings, depending on the input voltage and load variations, to check the worst case values. A design example of a 500 kHz 150 W offline switching power supply is given for both modes of operation, and it is implemented for experimental verification.<> 相似文献
3.
Analysis and design of a modified series resonant converter 总被引:1,自引:0,他引:1
A modified series resonant converter (SRC) (also referred to as the LCL-type SRC) which overcomes the problems of the standard series resonant converter is presented. A state-space approach is used for the analysis. Analysis shows that the converter enters into three different modes. Converter gain and other component stresses are plotted with variation in the load current. Detailed experimental results obtained from a 500 W MOSFET converter are presented to verify the theory. With a proper selection of inductor ratio, only a narrow variation in switching frequency is required to regulate the output voltage for wide variation in the load current. It is shown that, by placing the parallel inductor on the secondary side, the parasitics of the high-frequency transformer can be used profitably 相似文献
4.
A series resonant converter modified by adding an inductor in parallel with the transformer primary (or secondary) is presented. This configuration is referred to as an “LCL-type series resonant converter”. A simplified steady-state analysis using complex AC circuit analysis is presented. Based on the analysis, a simple design procedure is given. Detailed experimental results obtained from a MOSFET-based 640 W converter are presented to verify the analysis. A narrow variation in switching frequency is required to regulate the output voltage for a very wide change in load, and the converter has load short-circuit capability. It is shown that by placing the parallel inductor on the secondary side, the parasitics of the high-frequency transformer can be used profitably 相似文献
5.
大功率LED恒流驱动电源设计 总被引:1,自引:3,他引:1
为了驱动高功率LED,设计了一种基于隔离反激式原理的恒流驱动开关电源。该设计主要包括反激式开关电源电路的设计、开关电源变压器的选择和设计、功率因数校正电路的设计以及相关的各种保护电路的设计。综合考虑EMI和散热问题,对该电源进行了恰当的PCB设计并完成了实物制作,对该电源进行了输出测试和功率因数测试实验,实验结果表明该电源功率输出稳定,输出电压为41.8V,电流为338mA功率因数为0.86,并成功点亮了12个1 W的大功率LED。该设计对大功率LED的应用具有一定的参考价值。 相似文献
6.
A high-frequency (HF)-link DC-DC parallel resonant converter (PRC) operating above resonance is analyzed using the state-space approach. The analysis includes the effect of the leakage and magnetizing inductances of the high-frequency transformer. Steady-state solutions are derived and used to obtain the design curves. A method of obtaining an optimum operating point under certain constraints is developed and used as the basis of a simple design procedure. The analysis shows that including an HF transformer introduces a new mode of operation in between the two general steady-state modes. Experimental results obtained with a MOSFET-based PRC for three different transformer turns ratios are presented to support the theory. Efficiencies of about 89% were obtained for 985 W, 115 V, and 230 V output converters, whereas an efficiency of about 86% was obtained for a 15 V, 63 A converter. It was observed that the introduction of the transformer considerably affected the performance, especially in the case of low output voltage and large load current converters 相似文献
7.
Francis Rodes Eliane Garnier Salma Alozade 《电子设计技术》2005,12(8):92-94
为执行长期监视任务的便携式遥测系统供电.向人们提出了有趣的设计挑战。电池不适合于某些关键性应用,且在这些环境中,设计人员一般用无线感应链路来传输功率与数据。感应链路由一个驱动固定初级线圈的射频发射器与一个为便携式装置提供电源的松耦合次级线圈组成。对设计工程师来说.测量发射功率相当重要.因为它会限制设计人员可包含至便携式装置中的电路数量。但不幸的是,传统测试设备不适合执行该任务. 相似文献
8.
9.
This article analyses and presents an LLC resonant converter with a high power factor for LCD-TV applications. It integrates the advantages of power factor correction and the LLC resonant converter. It can improve not only power quality but also circuit efficiency. Since the power factor corrector is used in the first stage of the LLC resonant converter, it is suitable for wide input voltage range application. On the basis of the resonant behaviour, zero voltage switching is achieved for the power switches and ZCS is achieved for the rectifier diodes. An experimental prototype of 90–260V rms input and 12V/10A and ?12V/10A outputs with 92.6% efficiency for 32″ LCD-TV application is built in the laboratory to verify the operation principle of the adopted converter. 相似文献
10.
Jong-Lick Lin Jiun-Shang Lew 《Power Electronics, IEEE Transactions on》1999,14(5):793-802
Robust controller design for a series resonant power converter is presented when load variation and unregulated input line voltage perturbation are taken into consideration. The perturbation of unregulated line voltage is treated as an exogenous disturbance and the load variation as a structured uncertainty of the converter. An averaged model, including disturbance and model uncertainty, is then derived. Two kinds of μ synthesis-D-K and μ-K iteration schemes-are applied to design robust controllers to diminish the susceptibility of the regulated voltage to perturbations of load variation and unregulated line voltage. In addition, a classical controller is also designed for performance comparison. Finally, simulations and experimental results are presented to verify the feasibility of the robust control theory 相似文献
11.
Jiatian Hong Maksimovic D. Erickson R.W. Khan I. 《Power Electronics, IEEE Transactions on》1995,10(1):1-8
A half-cycle control technique for the parallel resonant power converter operated as a high power factor rectifier is introduced in this paper. Switching of the bridge power transistors is determined such that the bridge input current averaged over a half switching cycle exactly follows the reference proportional to the input voltage. Zero current switching and below-resonance operation are guaranteed, while control of the input current is the fastest possible, regardless of the operating point. In contrast to conventional regulators, the performance is preserved under both small and large signal variations, and also for large variations of the power-stage parameter values. Fast response, stability and robustness are experimentally verified on a 1.4 kW prototype 相似文献
12.
Five basic operating modes of the parallel resonant converter are analyzed. Three of the modes occur when the output filter inductor is removed and the remaining two occur when the filter inductor is large. Closed-form solutions are found for the two most important modes. Analysis results are given graphically so that the designer can use them without lengthy calculation or computer iteration. Switching frequency, peak tank capacitor voltage, and peak tank inductor current are plotted in the output plane. These plots, with a load line superimposed, show how operating point, frequency, and peak stress vary as load conditions change. Use of the output plane plots to minimize component costs is explained. Comparison of the best designs found for the large and zero filter inductance cases shows that removing the filter inductor can reduce both parts count and tank circuit size while peak transistor current remains unchanged 相似文献
13.
由于LED自身的特殊光电特性,所以无法直接使用交流市电进行驱动,需要专用的驱动电源进行驱动。为了给LED提供一个性能优良,均流效果好的多路输出驱动电源,详细介绍了半桥LLC谐振变换器的工作过程、电容无源均流的电路结构与原理,以及电路中各个关键参数的设计过程。基于理论分析和设计方法,设计了一台功率为38W的基于LLC谐振变换器的两路输出LED均流样机,并且用Saber仿真软件搭建模型,进行了实验测试与分析。 相似文献
14.
A series/parallel resonant DC-DC converter with secondary-side resonance and a novel input boosting feature is described. In order to greatly reduce the conduction loss (factor of four) due to circulating currents in the resonant components, the boost circuit, which requires no additional active switches, operates only when needed during transient input voltage dips. This reduces the effective input voltage range over which the converter must operate and allows optimization at the steady-state input voltage. The converter employs highly efficient resonant inductors and novel Z-folded thin flex circuit transformer windings to meet a density of greater than 50 W/in3 with an efficiency approaching 95%. The DC-DC converter was developed for use as a 270 to 50 V line converter for distributed power applications 相似文献
15.
A prototype capacitor-charging power supply (CCPS) that utilizes a Ward converter is presented. This converter is a member of the family of resonant converters and is capable of zero-current switching. It is applicable to capacitor charging because of its inherent short-circuit protection and its insensitivity to the value of the load capacitance. The converter is controlled using a constant on-time constant frequency scheme that allows the utilization of zero-current switching techniques. The prototype CCPS is capable of charging various values of load capacitors up to 1000 V DC. Waveforms that show single- and repetitive-charge operation of the CCPS are presented 相似文献
16.
17.
The steady-state operation of a hybrid series parallel resonant bridge is analyzed. Two expressions are derived for the power output as a function of capacitor ratio, switching frequency, and conversion ratio. One power output expression is for conversion ratios less than or equal to one, and the other expression is for conversion ratios greater or equal to one and less than or equal to two. The optimum conversion ratio for maximum power transfer is also derived 相似文献
18.
Juanyu Bu Sznaier M. Zi-Qin Wang Baterseh I. 《Power Electronics, IEEE Transactions on》1997,12(5):837-853
DC-to-DC resonant power converters have been the subject of much attention recently. These power converters have the potential to provide high-performance conversion without some of the problems associated with classical pulse-width modulation (PWM)-based converters, thus allowing for smaller, lighter power supplies. However, in order to achieve this, a suitable control circuit, capable of maintaining the desired output voltage under different operating conditions, is required. In the past, small-signal models obtained around the nominal operating points were used to design controllers that attempted to keep the output voltage constant in the presence of input perturbations. However, these controllers did not take into account either load or components variations, and thus could lead to instability in the face of component or load changes. Moreover, the prediction of the frequency range for stability was done a posteriori, either experimentally or by a trial-and-error approach. In this paper, the authors use μ-synthesis to design a robust controller for a conventional parallel resonant power converter. In addition to guaranteeing stability for a wide range of load conditions, the proposed controller rejects disturbances at the power converter input while keeping the control input and the settling time within values compatible with a practical implementation. These results are validated by means of detailed nonlinear circuit simulations obtained using PSpice 相似文献
19.
A resonant current feedback loop is shown to provide a simple and effective method of control for the series-parallel-loaded LCC resonant converter in high power factor rectification systems 相似文献
20.
《Microelectronics Reliability》2014,54(9-10):1833-1838
In this paper a 3-D electrothermal (ET) analysis of a DC–DC parallel resonant converter (PRC) for constant current (CC) application is presented. A full 3-D ET simulation approach is proposed at application level to provide a support for the design stage and to analyse possible fault conditions inside the active devices. Simulations and measurements have been performed on a 100 W–2 A prototype of a PRC-CC circuit with 80 kHz nominal switching frequency.In particular, in the reported case study, the analysis has been focused on the full-bridge section of the circuit in order to prove the effect of the soft switching operation, introduced by the resonant technique, and consider the effect of possible fault conditions. To this purpose an unexpected short-circuit condition on a power MOSFET composing the H-bridge is considered, to evaluate the ET circuit behaviour and the time-to-failure of the power section. Considerations are carried out in terms of minimum requirements of protection circuits which must be fulfilled in order to avoid catastrophic system failure.A second power converter, rated for 1.5 kW, has been then designed, based on the same circuital topology, and an ET simulation has been performed in order to carry out considerations on the effect of mismatches among the input bridge devices. 相似文献