首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study has focused on numerical investigation on the flame structure, flame lift-off and stabilization in the partially premixed turbulent lifted jet flames. Since the lifted jet flames have the partially premixed nature in the flow region between nozzle exit and flame base, level set approach is applied to simulate the partially premixed turbulent lifted jet flames for various fuel jet velocities and co-flow velocities. The flame stabilization mechanism and the flame structure near flame base are presented in detail. The predicted lift-off heights are compared with the measured ones.  相似文献   

2.
This study investigates the nonpreximed H2/CO-air turbulent flames numerically. The turbulent combustion process is represented by a reaction progress variables model coupled with the presumed joint probability function. In the present study, the turbulent combustion model is applied to analyze the nonadiabatic flames by introducing additional variable in the transport equation of enthalpy and the radiative heat loss is calculated using a local, geometry independent model. Calculation are compared with experimental data in terms of temperature, and mass fraction of major species, radical, and NO. Numerical results indicate that the lower and higher fuel-jet velocity flames have the distinctly different flame structures and NO formation characteristics in the proximity of the outer core vortex zone. The present model correctly predicts the essential features of flame structure and the characteristics of NO formation in the bluff-body stabilized flames. The effects of nonequilibrium chemistry and radiative heat loss on the thermal NO formation are discussed in detail.  相似文献   

3.
In order to investigate the soot formation and oxidation processes, we employed the two variable approach and its source terms representing soot nucleation, coagulation, surface growth and oxidation. For the simulation of the axi-symmetric turbulent reacting flows, the pressure-velocity coupling is handled by the pressure based finite volume method. We also employed laminar flamelet model to calculate the thermo-chemical properties and the proper soot source terms from the information of detailed chemical kinetic model. The numerical and physical models used in this study successfully predict the essential features of the combustion processes and soot formation characteristics in the reacting flow field.  相似文献   

4.
In order to realistically predict the combustion characteristics of the oxy-fuel flame, the present study employs the non-adiabatic flamelet approach. In this combustion model, the detailed equilibrium chemistry is utilized to accurately account for the thermal dissociation as well as to properly include the radiative cooling effects on the detailed chemistry. Numerical results indicate that the present approach has the capability to correctly capture the essential features and precise structure of the oxy-fuel flames. In this work, the detailed discussion has been made for the characteristics of oxy-fuel flames, the capability and defect of the present approach and also uncertainties of experimental data.  相似文献   

5.
The present study numerically investigates the fuel-air mixing characteristics, flame structure, and pollutant emission inside a double-swirler combustor. A PSR (Perfectly Stirred Reactor) based microstructural model is employed to account for the effects of finite rate chemistry on the flame structure and NO formation. The turbulent combustion model is extended to nonadiabatic flame condition with radiation by introducing an enthalpy variable, and the radiative heat loss is calculated by a local, geometry-independent model. The effects of turbulent fluctuation are taken into account by the joint assumed PDFs. Numerical model is based on the non-orthogonal body-fitted coordinate system and the pressure/velocity coupling is handled by PISO algorithm in context with the finite volume formulation. The present PSR-based turbulent combustion model has been applied to analyze the highly intense turbulent nonpremixed flame field in the double swirler combustor. The detailed discussions were made for the flow structure, combustion effects on flow structure, flame structure, and emmission characteristics in the highly intense turbulent swirling flame of the double swirler burner.  相似文献   

6.
Journal of Mechanical Science and Technology - Using the multi-environment probability density function (MEPDF) approach, large Eddy simulation (LES) has been carried out for the piloted turbulent...  相似文献   

7.
The direct-quadrature method of moment (DQMOM) and transported PDF (TPDF) approaches have been adopted to predict the precise structure of turbulent CH4-air piloted jet flame. To realistically account for precise turbulent flame structure of turbulent jet flame, the mathematical formations of the transported PDF method are based on the joint-composition PDF model together with IEM mixing process. To minimize computational burden, the steady flamelet library is utilized to account for non-equilibrium chemistry. For unconditional means and conditional scatters for species mass fraction and temperature, comparison between predictions and measurement are made. Numerical results obtained by DQMOM and TPDF are reasonably well agreed with experimental data in terms of the mean and rms of species mass fraction and probability density function.  相似文献   

8.
Journal of Mechanical Science and Technology - A three-dimensional numerical simulation was performed to investigate the physics and combustion characteristics of a two-phase reacting turbulent...  相似文献   

9.
The effect of fluctuation of Equivalence Ratio (ER) in a turbulent reactive field has been studied in order to check the global combustion characteristics induced by the local fluctuation. When the flow is premixed on a large scale, closer examination on a small scale reveals that local fluctuations of ER exist in an imperfectly premixed mixture, and that these fluctuations must be considered to correctly estimate the mean reaction rate. The fluctuation effect is analyzed with DNS by considering the joint PDF of reactive scalar and ER, followed by modeling study where an extension of stochastic mixing models accounting for the ER fluctuation is reviewed and tested. It was found that models prediction capability as well as its potential is in favor to this case accounting the local ER fluctuation. However, the effect of local fluctuation did not show any notable changes on the mean global characteristics of combustion when statistical independence between the reactive scalar and ER field is imposed, though it greatly influenced the joint PDF distribution. The importance of taking into account the statistical dependency between ER and combustible at the initial phase is demonstrated by testing the modeled reaction rate.  相似文献   

10.
Journal of Mechanical Science and Technology - A Multi-environment probability density function (MEPDF) approach coupled with a tabulated chemistry has been developed to numerically investigate the...  相似文献   

11.
The Representative Interactive Flamelet (RIF) concept has been applied to numerically simulate the combustion processes and pollutant formation in the direct injection diesel engine. Due to the ability for interactively describing the transient behaviors of local flame structures with CFD solver, the RIF concept has the capabilities to predict the auto-ignition and subsequent flame propagation in the diesel engine combustion chamber as well as to effectively account for the detailed mechanisms of soot formation, NOX formation including thermal NO path, prompt and nitrous NOX formation, and reburning process. Special emphasis is given to the turbulent combustion model which properly accounts for vaporization effects on the mixture fraction fluctuations and the pdf model. The results of numerical modeling using the RIF concept are compared with experimental data and with numerical results of the commonly applied procedure which the low-temperature and high-temperature oxidation processes are represented by the Shell ignition model and the eddy dissipation model, respectively. Numerical results indicate that the RIF approach including the vaporization effect on turbulent spray combustion process successfully predicts the ignition delay time and location as well as the pollutant formation.  相似文献   

12.
In this paper, we introduce a procedure to formulate and solve optimization problems for multiple and conflicting objectives that may exist in turning processes. Advanced turning processes, such as hard turning, demand the use of advanced tools with specially prepared cutting edges. It is also evident from a large number of experimental works that the tool geometry and selected machining parameters have complex relations with the tool life and the roughness and integrity of the finished surfaces. The non-linear relations between the machining parameters including tool geometry and the performance measure of interest can be obtained by neural networks using experimental data. The neural network models can be used in defining objective functions. In this study, dynamic-neighborhood particle swarm optimization (DN-PSO) methodology is used to handle multi-objective optimization problems existing in turning process planning. The objective is to obtain a group of optimal process parameters for each of three different case studies presented in this paper. The case studies considered in this study are: minimizing surface roughness values and maximizing the productivity, maximizing tool life and material removal rate, and minimizing machining induced stresses on the surface and minimizing surface roughness. The optimum cutting conditions for each case study can be selected from calculated Pareto-optimal fronts by the user according to production planning requirements. The results indicate that the proposed methodology which makes use of dynamic-neighborhood particle swarm approach for solving the multi-objective optimization problems with conflicting objectives is both effective and efficient, and can be utilized in solving complex turning optimization problems and adds intelligence in production planning process.  相似文献   

13.
A number of modern optical methods used for diagnostics of reactive flows are described. Various aspects of using advanced modifications of particle image velocimetry (Stereo-PIV, High-repetition PIV, and Tomo-PIV) for measuring instantaneous velocity fields in reactive flows are discussed in detail. Capabilities of PIV and spectroscopy of flame radiation (CH* radical) in obtaining data on the spatial flow structure and the flame are demonstrated by an example of studying a swirled turbulent propane-air flame and an isothermal jet.  相似文献   

14.
介绍镗削加工的力学模型.沿切削刃切屑厚度的分布,被作为刀具刃倾角、刀尖圆弧半径、切削深度和进给量的函数被建模.使用机械的和直角到斜角切削转变两种方法,建立该过程的切削力学模型。  相似文献   

15.
Journal of Mechanical Science and Technology - This paper describes a numerical simulation of the lubrication between the first compression piston ring and the cylinder liner in a typical diesel...  相似文献   

16.
This study presents the methodological aspects of combustion instability modeling and pro-vides the numerical results of the model (sub-scale) combustion chamber, regarding geometrical dimensions and operating conditions, which are for determining the combustion stability boundaries using the model chamber. An approach to determine the stability limits and acoustic characteristics of injectors is described intensively. Procedures for extrapolation of the model operating parameters to the actual conditions are presented, which allow the hot-fire test data to be presented by parameters of the combustion chamber pressure and mixture (oxidizer/fuel) ratio, which are customary for designers. Tests with the model chamber, based on the suggested scaling method, are far more cost-effective than with the actual (full-scale) chamber and useful for injector screening at the initial stage of the combustor development in a viewpoint of combustion instabilities.  相似文献   

17.
针对航空遥感惯性稳定平台框架伺服系统中齿隙非线性环节造成的系统驱动延时、换向跳变及冲击振荡等问题,对航空遥感惯性稳定平台齿隙非线性进行建模与补偿.在分析齿隙非线性环节结构和传动特点基础上,建立了齿隙非线性死区模型;利用MATLAB仿真分析了齿隙对系统性能的影响;以框架伺服系统为研究对象,应用反步积分法,通过依次选择Lyapunov函数,设计了基于状态反馈的控制器,并进行实验验证.结果表明:齿隙误差补偿可有效提高系统控制精度;与传统PID控制相比,反步积分法显著降低了齿隙非线性对伺服系统性能的影响,在给定框架期望转角情况下,反步积分法比PID控制响应速度提高78.26%、稳态精度提高23.1%.  相似文献   

18.
19.
A numerical model of processes in glow discharge plasmas is presented. The model is intended for simulating the work of plasma deposition reactors. One type of ion is considered. The ion and electron plasma components are modeled by kinetic equations with collisions. An effective parallel algorithm for modeling the processes in monosilane plasmas is designed; its main characteristics are given. Results of numerical modeling using the model are adequate to data obtained in physical experiments.  相似文献   

20.
This study focuses on formulation of robust design for vapour smoothing, an advanced surface finishing technique for finishing ABS replicas where hot vapours tend to level the uneven surface asperities. The process parameters of combined Fused Deposition Modeling (FDM) and Vapour smoothing (VS) process are optimized for sustainability of ABS replicas for biomedical applications. Six input parameters have been investigated, two of FDM and four of VS processes while surface roughness and hardness of ABS part is taken as response. The vapour smoothing process ensue ultra smooth finish with negligible deterioration of upper surface deducing maximum contribution of smoothing time (51.07%) and number of cycles (40.08%) on surface roughness. Hardness of replica has been slightly increased by maximum impact of orientation angle (34.69%) and postcooling time (44.46%) of ABS replicas which endorsed the use of FDM replicas for investment casting of biomedical implants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号