共查询到18条相似文献,搜索用时 117 毫秒
1.
2.
3.
以城市污水为原水,考察了一种分点进水的改良型A2/O工艺的脱氮除磷效果。试验结果表明,原水按照6∶4的体积比分别进入厌氧池和缺氧池后,增加了缺氧池的碳源浓度,提高了该系统的脱氮效果。当进水中碳氮质量比平均为6.84、硝化液回流比为200%,CODCr、TN、NH3-N和TP的平均质量浓度分别为237.02、36.39、22.99和4.98mg/L时,出水CODCr、TN、NH3-N和TP的平均质量浓度分别为34.29、10.70、0.18和0.46mg/L,去除率分别为85.53%、70.60%、99.22%和90.76%。 相似文献
4.
交替运行传统A2/O工艺和倒置A2/O工艺进行脱氮除磷研究 总被引:2,自引:0,他引:2
通过监控污水处理系统出水总氮、氨氮和磷酸盐的变化,把污水处理系统的工艺在传统A2/O工艺和倒置A2/O工艺之间转换.笔者发现;传统A2/O工艺脱氮能力相对较弱、除磷能力相对较强,倒置A2/O工艺脱氮能力相对较强,除磷能力相对较弱;适度地交替运行传统A2/O工艺和倒置A2/O工艺,能优化污水处理系统的脱氮除磷效果。 相似文献
5.
采用实验室规模连续流厌氧-缺氧-好氧(A/A/O)工艺处理人工模拟生活污水,考察了不同碳氮比(C/N)和溶解氧(DO)工况下改变缺氧池容积对A^2/O工艺脱氮除磷效果的影响。结果表明,在低C/N和好氧阶段DO含量较低时,增大缺氧池容积有利于提高TN的去除率和除磷效率,在COD/ρ(TN)(ρ(TN)≈40 mg/L)约为7,DO的质量浓度在0.9~1.2 mg/L的条件下,缺氧池容积增加1倍,TN去除率可达71.1%,PO4^3--P去除率可达94.0%;在高C/N和好氧阶段DO含量较高时,增大缺氧池容积在提高TN去除率和改善出水水质方面效果不显著。 相似文献
6.
采用连续流A2/O工艺对模拟生活废水进行了长期连续实验,考察了低污泥浓度[MLSS=(1500±200) mg/L]下进水负荷与回流比对脱氮效率的影响。结果表明,通过调节进水流量改变进水负荷,当进水负荷从5.03 gCOD/(gMLSS·d)逐渐提高至10.05 gCOD/(gMLSS·d)时,COD去除率≥95%,氨氮去除率由69.59%升高为95%,总氮去除率由53.53%升高到80%;当进水负荷由10.05 gCOD/(gMLSS·d) 提高至20.31 gCOD/(gMLSS·d)时,氨氮去除率下降为50%,总氮去除率下降为40%。通过调节进水COD改变进水负荷,当进水负荷从10.05 gCOD/(gMLSS·d) 逐渐提高到124.11 gCOD/(gMLSS·d) 时,COD和氨氮的去除率均>90%,总氮去除率从70%逐渐增加到85%。在混合液回流比分别为300%、200%和100%的条件下,回流比对COD和氨氮去除效果影响较小,COD去除率≥90%,氨氮去除率≥95%;回流比对总氮去除效果影响较大,随回流比的增大总氮去除率减小。当内回流比为100%时,总氮去除率最高,达到79.76%。 相似文献
7.
8.
16~18污泥龄(SRT)作为活性污泥法设计与运行的参数已显示出比其它参数更加重要。试验以实际生活污水为对象,研究SRT分别为5、10、15、20、25、30d时,系统CODc、NH4^+-N、TN和PO4^3-P的去除率以及污泥特性的变化,试验期间其它运行参数保持不变。试验结果表明:SRT=15d时系统总体脱氮除磷效果最好, 相似文献
9.
《水处理技术》2021,47(10):90-93,98
采用化学除磷工艺处理城市污水,重点对比研究了单点与多点化学强化除磷工艺对TP与氮素去除效果的影响。结果表明,对于单点化学除磷工艺,PAC存在除磷极限,过量投加会造成药剂成本增加,对TP指标的控制无明显积极作用;采用多点化学强化除磷工艺,出水TP质量浓度能降至0.08 mg/L左右,去除率高达98.5%以上,相比单点化学除磷工艺而言,浓度下降了74.3%,下降趋势明显;基于本实验所采用的8种多点化学强化除磷工况,较为优化的A点PAC投加量为20 kg/km3,B点PFS投加量为17.5 kg/km3,该工况下,出水TP平均质量浓度为0.16 mg/L,TN平均质量浓度为9.17 mg/L,NH3-N平均质量浓度为0.20 mg/L,显著优于一级A排放标准,相比原工况,全年可节约107余万元的除磷剂费用,且出水TP与氮素指标能实现更加稳健的控制,有效促进了成本与水质的双赢。 相似文献
10.
通过在倒置A2/O工艺中增设填料,并对其污泥及硝化液回流方式进行变化后,得到兼具脱氮除磷功能与生物膜特点的改良型倒置A2/O生物膜工艺,并以实际生活污水为处理对象考察了工艺的脱氮除磷性能。结果表明,系统采用硝化液回流与污泥回流分离的方式,并增设组合填料与火山岩后,有助于提升系统的脱氮除磷性能,增强系统的稳定性。当DO质量浓度维持在2.0 mg/L和硝化液体积回流比为200%的条件下,系统对COD、NH4+-N、TN及TP的去除率分别可达84.9%、92.8%、70.9%和75.3%。DO质量浓度及硝化液回流比对系统的脱氮除磷性能有较大影响。 相似文献
11.
12.
IMBR-A/O工艺对生活污水脱氮除磷的研究 总被引:3,自引:0,他引:3
采用自行设计的A/O一体式膜生物反应器对生活污水的脱氮除磷进行了研究.结果表明:硝化菌受pH值影响较大,通过投加小苏打来控制硝化O段pH值为6.5~7.0,使其满足硝化菌生长的范围,此时,NH4 -N的去除率达99%以上,出水浓度基本稳定在0.5mg·L-1以下;由于反硝化A段的DO值较高,使反硝化细菌受到抑制造成了系统出水TN值较高,但也能达到80%以上的去除率;TP的去除是由于取样污泥带出了部分磷以及微生物生长消耗了部分磷. 相似文献
13.
通过对COD、TN、TP和NH3-N监测分析,确定了A/A/O最佳的工艺参数为污泥负荷为0.20kg COD/(kg MLSS·d),停留时间为8h,最佳污泥浓度为3000mg/L,泥龄为15d,其脱氮除磷效果良好,COD、TP、TN、NH3-N去除率分别为89.0%、93.0%、63.1%、84.5%,其出水达到了《城镇污水处理厂污染物排放标准》(GB18918-2002)Ⅰ级标准。 相似文献
14.
以采用厌氧/缺氧/好氧(A/A/O)工艺的城镇污水处理厂为研究对象,利用改良A/A/O中试装置开展处理实际污水的研究,通过与实际工艺的运行效果对比,系统探讨了低溶解氧(DO)浓度以及好氧池末端非曝气区的设置对脱氮除磷的影响。结果表明当好氧区的DO平均浓度从2.2mg/L逐渐降至1.0mg/L时,系统COD的去除效率与硝化效果未受到影响,但除磷效果明显下降;随着DO平均浓度的降低以及非曝气区对DO的缓冲,保证了缺氧区的缺氧环境,同时有效降低了内回流液中DO浓度的携带对碳源的消耗,提高了反硝化效率,使得系统对TN的去除率逐渐升高。就总体运行情况来看,A/A/O工艺中好氧区DO的平均浓度可以在1.0—2.0mg/L之间运行,同时在好氧区末端设置非曝气区,可以有效地缓冲内回流液中DO浓度对反硝化的影响,提高脱氮效率。 相似文献
15.
16.
17.
18.
针对传统倒置A2/O工艺(R1)生物脱氮除磷效率不理想的现状,开发了倒置A2/O耦联生物滤池(BAF)(R2)的新工艺,并在中温条件下比较了两工艺对城镇生活废水的脱氮除磷效率。结果表明,稳定运行期R2内出水COD维持在10.7~17.6 mg/L,去除率为92.5%~94.2%,高于R1。延程分析表明,R2内COD主要在缺氧期与厌氧期被消耗。R2内总氮(TN)及总磷(TP)的去除率分别为81.3%~82.8%、85.6%~86.9%,均显著高于R1。机制探究表明,R2强化了硝化过程,使得回流液中硝态氮含量升高,强化了缺氧区的反硝化脱氮过程。在生物除磷方面,R2厌氧期释磷量高于R1,且合成胞内聚合物聚羟基脂肪酸酯(PHA)的最大含量为6.8 mg/g,从而在随后的好氧期产生更多能量用于吸磷。 相似文献