首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 250 毫秒
1.
钨粉碳化防粘涂料的研制   总被引:2,自引:2,他引:0  
张立  陈述 《硬质合金》1997,14(2):96-98
在生产粗颗粒WC粉时,因WC粘舟而引起舟皿非正常破损是比较常见的现象。本文对W粉碳化时WC粘舟原因进行了分析,介绍了一种既具有较好防粘效果,同时也对WC与合金性能无不良影响的W粉碳化防粘涂料。  相似文献   

2.
针对传统还原-碳化工艺中WC粉颗粒长大的问题,采用碳氢协同还原-碳化法制备纳米级球形WC粉,研究了前驱体配碳比和反应温度对WC粉性能的影响。结果表明,WC粉的碳含量与前驱体的配碳比密切相关,最佳配碳比(即n(C)/n(W)值)为3.6。W转变为WC具有结构遗传性,WC粉的平均粒径与还原温度和碳化温度密切相关。随着还原温度由680℃升高至800℃,还原水蒸气与碳反应生成CO和H_2,显著降低体系中水蒸气的分压,从而抑制中间产物W颗粒的挥发-沉积长大,WC粉的平均粒径随还原温度升高而减小。碳化过程中的高温促进WC颗粒的晶界迁移和纳米W颗粒之间的烧结合并长大,WC粉的平均粒径随碳化温度的升高而增大。n(C)/n(W)为3.6的前驱体粉末经800℃还原和1100℃碳化后,得到平均粒径为87.3 nm的球形WC粉。  相似文献   

3.
粗颗粒WC在球齿、冲压模具材料等抗冲击性能要求高的行业应用广泛,其形貌、微观结构对制备的合金性能具有举足轻重的作用,而这些又与碳化时的配碳量、温度息息相关。本文探索了碳化配碳量对WC粉末形貌的影响,同时对比了由这些WC粉末制备的WC-8%Co(质量分数)硬质合金性能。结果表明:碳的质量分数为6.04%时,碳质舟皿会向粉体中补碳,使得WC总碳质量分数仍可达到6.12%,相比舟皿表面的WC,舟皿芯部的WC的结晶不完整且含有更多的W2C相;碳的质量分数为6.13%时,WC结晶完整且不受舟皿位置的影响。碳化配碳量6.04%的WC所制备的合金,其金相组织中细小WC晶粒多、硬度和抗弯强度高但断裂韧性较低。  相似文献   

4.
研究了在传统氢还原工艺制备纳米碳化钨粉末过程中不同氧化钨的形貌结构对纳米W/WC粉末均匀性的影响,并对粉末及其WC-Co烧结体的性能进行了表征。结果表明,用具有疏松、多孔形貌结构的细小氧化钨颗粒更容易制备出结构较疏松、分散性较好的纳米W粉和WC粉。晶粒聚集和异常粗大颗粒的产生,主要与碳化过程中团聚纳米钨粉颗粒因烧结合并增粗有关。  相似文献   

5.
针对传统还原-碳化工艺中WC粉颗粒的长大问题,采用碳氢协同还原-碳化法制备纳米级球形WC粉,研究前驱体配碳比和反应温度对WC粉性能的影响。结果表明,WC的碳含量与前驱体的配碳比密切相关,最佳配碳比(即n(C)/n(W)值)为3.6。W向WC的转变具有结构遗传性,WC的平均粒径与还原温度和碳化温度密切相关。随着还原温度由680 ℃升高至800 ℃,还原水蒸气与碳反应生成CO和H2,显著降低体系中水蒸气的分压,从而抑制中间产物W颗粒的挥发-沉积长大,WC的平均粒径随还原温度升高而减小。碳化过程中的高温促进WC颗粒的晶界迁移和纳米W颗粒之间的烧结合并长大,WC的平均粒径随碳化温度的升高而增大。n(C)/n(W)为3.6的前驱体粉末经800 ℃还原和1100 ℃碳化后,得到平均粒径为87.3 nm的球形WC粉。  相似文献   

6.
研究了两步碳化工艺对氢还原/碳化制备的纳米WC粉末及其WC-Co合金性能的影响。结果表明,WC粉末的晶粒聚集和异常粗大颗粒主要是由于碳化初期钨颗粒因烧结合并增粗,而钨粉碳化不完全主要是由于碳化后期的温度偏低,利用先低温碳化后高温碳化的两步碳化工艺不仅能够有效抑制纳米颗粒烧结合并增粗,而且可以使钨粉充分碳化,得到颗粒细小、均匀,W2C含量极少的WC粉末;采用1120℃碳化加1180℃碳化的两步碳化工艺制备出的138 nm的WC粉末,W2C含量少于0.5%(质量分数),以其为原料制备的WC-Co烧结体显微组织结构均匀,为超细晶硬质合金,综合性能优良,洛氏硬度HRA高达93.7,抗弯强度高达4380 MPa。  相似文献   

7.
《硬质合金》2019,(5):361-367
本文探讨了碳化温度对超细WC形貌、粒度、亚晶尺寸等粉末性能的影响和不同碳化温度制备的超细WC粉末对合金强度、硬度、微观结构等合金性能的影响。粉末样品的制备采用钨粉与炭黑的混合物为试验原料,在中频电炉中,分别于1 450、1 480、1 520℃碳化,利用Fsss粒度仪、SEM电镜、马尔文激光粒度分布仪、X射线衍射仪等仪器对粉末样品进行分析检测;制备的粉末样品加入细钴粉按照6%配成合金,采用1 410℃与1 450℃两个烧结温度制备成合金试验样品,测维氏硬度,抗弯强度,用金相显微镜观察合金的组织结构,比较不同碳化温度制备的超细碳化钨在不同的烧结温度下制备的合金性能与组织结构的差异。研究表明:碳化温度对超细碳化钨各项性能及超细合金各项性能有较大的影响,温度在1 480℃以下,单颗粒与单颗粒之间的烧结长大比较微弱,单颗粒内部的亚晶长大也很微弱,但当温度升高到1 520℃,亚晶尺寸有明显升高,粉末结晶更趋完整。低温碳化的超细碳化钨,结晶不完整,缺陷较多,粉末活性高,容易长粗,矫顽磁力降幅较大,造成合金的微观结构不均匀。高温碳化的超细碳化钨在1 410℃烧结制备的合金试样的综合性能与微观结构要优于1 450℃烧结制备的合金试样。  相似文献   

8.
中颗粒钨粉高温碳化制取粗晶碳化钨粉的研制   总被引:3,自引:1,他引:2  
龙运兰  史顺亮  杨蓉 《硬质合金》2007,24(4):211-214,218
本文叙述采用中颗粒钨粉高温碳化制取粗晶WC粉的过程,探讨碳化和球磨破碎工艺对WC的性能影响,并对用中颗粒钨粉高温碳化制取的粗晶WC粉与传统工艺制取的粗晶WC粉生产的合金性能进行比较。  相似文献   

9.
本文通过对粗、细两种W粉进行球磨,研究不同球磨时间下W粉粒度、形貌及亚晶尺寸的变化,再制备成WC及合金,观察其对WC及合金性能的影响。试验结果表明:随着W粉球磨时间的延长,细W粉中的团粒和粗W粉的聚集体先破碎或分离,随后钨晶粒在球的冲击下发生变形,特别是粗大钨晶粒中形成许多位错、裂纹等缺陷,导致亚晶尺寸不断变小。球磨后钨晶粒中存在的位错和表面裂纹在碳化开始时可有效提高碳原子向W粉颗粒内部的扩散速率,但这种影响随碳化温度提高或碳化时间的延长而不断减弱。随着W粉球磨时间的延长,其合金的磁力值均呈增加,表明合金中WC的晶粒度不断减小,但晶粒度的变化幅度不大;球磨时间对合金其它性能没有明显影响。长时间球磨粗W粉中出现少量扁平的W粉颗粒,在其制备的WC粉中也能发现,这可能是粗晶合金的金相组织中长条状晶粒数量增加的原因。  相似文献   

10.
本文以两种不同形貌的氧化钨和炭黑为原料,采用加酒精湿磨配炭制取混合料,再经干燥,在中频电炉中,于1 000℃、1 250℃、1 400℃直接碳化,分析碳化产物的相成份、形貌、粒度、炭含量、氧含量。研究发现,不同原料在相同温度直接碳化,碳化产物形貌完全不同;薄片状氧化钨所制得的碳化钨在低倍扫描电镜下观察几乎没有超过50μm的团聚颗粒;在高倍扫描电镜下观察是许多小颗粒的团聚体,并且聚集得很紧密。针状氧化钨原料制得的碳化钨在低倍扫描电镜下观察团粒较多,而且保持着原APT的伪晶形貌,在高倍扫描电镜下观察呈松散的细颗粒聚集体。当直接碳化温度达到1 250℃,反应基本完全,化合碳接近碳化钨理论含碳量。碳化钨粒度随温度的升高而增大。  相似文献   

11.
蓝钨物理性能对钨粉和碳化钨粉性能的影响   总被引:2,自引:0,他引:2  
彭卫珍 《硬质合金》2004,21(3):142-148
仲钨酸铵(APT)对蓝钨性能影响较大,而蓝钨物理性能对钨粉和碳化钨粉的性能影响也较大,通过对APT煅烧前或煅烧后进行特殊处理优选蓝钨原料,可以制取优质碳化钨粉。  相似文献   

12.
袁明健  顾金宝 《硬质合金》2010,27(5):293-297
将不同碳含量碳化钨配制的钴含量为11%左右的硬质合金石蜡混合料压制成压坯,将压坯置于一体化ZKL-16氢气脱蜡真空烧结炉和真空脱蜡真空烧结炉中,采用氢气、氮气、真空三种脱蜡方式分别进行脱蜡后真空烧结,烧结后的合金进行检测分析,比较发现采用氢气脱蜡真空烧结工艺可采用饱和碳化钨。在氢气脱蜡工艺下,研究了各工艺参数对脱蜡效果的影响,以确定氢气脱蜡条件下矿用硬质合金原料WC碳量的选择。结果表明,采用饱和碳含量6.13%的WC作为原料,经氢气脱蜡真空烧结,可生产出合格的硬质合金。  相似文献   

13.
黄道远  易丹青  刘瑞  李荐 《硬质合金》2007,24(4):203-206
采用扫描电镜和透射电镜等手段研究分析了从仲钨酸铵→紫钨→纳米钨粉→纳米碳化钨粉末的制备过程中,粉末颗粒形貌的演变规律。结果表明,粉末颗粒形貌发生板条状→针尖状→近球状→球状变化,粉末粒度则先变小而后有所增大。同时,我们发现碳化过程中通氢可以降低碳化温度和缩短碳化时间,对制备纳米碳化钨有利。  相似文献   

14.
采用扫描电镜对电化学回收WC骨架与重碳化后的电化学回收WC粉末形貌进行了观察。发现回收WC粉末中存在因Co溶解不完全、未溶骨架破碎不彻底以及废合金来源复杂所导致的明显的成分与粒度不均匀性问题。在实验观察与分析的基础上,提出了回收WC粉末与再生硬质合金质量改进的建议。  相似文献   

15.
傅练英 《硬质合金》2006,23(1):15-20
从粒度均匀性和聚集团粒量讨论了APT煅烧成WO3时的煅烧工艺对WC质量的影响,分析了引起WC粒度均匀性和聚集团粒的原因,并提出了较佳煅烧工艺。  相似文献   

16.
WC grain size has significant effect on WC-Co cemented carbide alloy properties. In order to inhibit WC grain growth during sintering process, grain growth-inhibitor Cr3C2 is usually added to tungsten carbide powder in advance through mechanical milling. While, homogeneous distribution of Cr3C2 in the tungsten carbide powder is difficult to achieve and result in abnormal growth of WC grains. For this purpose of growth-inhibitor uniform distribution, (CH3COO)3Cr is added into ammonium tungstate solution during evaporation and crystallization process to prepare Cr-doped APT powder, which can be used as precursor for ultrafine-grained WC-Co cemented carbide alloy preparation. Compared with conventional APT powder, the Cr-doped APT has smaller particle size and bulk density, moreover, chromium is evenly distributed within it. The Cr-doped APT is then used to produce Cr-doped tungsten powder, which also has smaller particle size than that of conventional tungsten powder. Cr-doped tungsten powder is subsequently prepared into tungsten carbide powder and WC-Co cemented carbide alloy through carbonization and sintering process, respectively. Compared with conventional WC-Co cemented carbide alloy, the obtained WC-Co cemented carbide alloy has smaller mean WC grain size (0.36 μm), and more uniform microstructure. Furthermore, the phenomenon of WC grain abnormal growth during sintering process is not observed, because the grain growth-inhibitor Cr3C2 is well dispersed in tungsten carbide and cobalt composite powder. Results show that the obtained WC-Co cemented carbide alloy presents better mechanical properties (HRA, bending strength, coercive force) than those of conventional WC-Co cemented carbide alloy. Accordingly, the novel addition of (CH3COO)3Cr during the evaporation and crystallization process is the key factor of ultrafine-grained WC-Co cemented carbide alloy production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号