首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of human interferon (IFN)-beta1b (Betaseron) on the proliferation of cultured human vascular smooth muscle and endothelial cells was tested in vitro. IFN-beta1b inhibited thymidine incorporation and growth of primary cultures of human aortic and coronary artery smooth muscle in a concentration-dependent manner. The same concentrations of IFN-beta1b did not inhibit thymidine incorporation or growth of primary cultures of human aortic or coronary artery endothelial cells. IFN-beta1b induced the expression of MxA (an antiviral protein induced by type I IFNs) in both smooth muscle and endothelial cells, suggesting that both cell types express receptors for type I IFNs. The growth-inhibitory effect of IFN-beta1b could be mimicked by commercially available human IFN-beta, but not by IFN-alpha2 or IFN-alpha8. The effect of IFN-beta1b was species specific, as it did not inhibit thymidine incorporation in aortic smooth muscle cells derived from pig, rabbit, rat, or mouse. The action of IFN-beta1b on smooth muscle cells persisted for at least 4 days following a 24 h preincubation with IFN-beta1b. Human vascular smooth muscle cells treated with IFN-beta1b did not release lactate dehydrogenase, nor did they show any morphologic change, suggesting that IFN-beta1b was not toxic to the human vascular smooth muscle cells. IFN-beta1b inhibited vascular smooth muscle growth while having no growth-inhibitory effect on endothelial cells obtained from the same blood vessel, making it a potential candidate for treating pathologic conditions where abnormal vascular smooth muscle proliferation is implicated, such as restenosis following balloon angioplasty or smooth muscle proliferation following vascular stenting.  相似文献   

2.
The effect of low density lipoprotein (LDL) on the intracellular mRNA concentration of the protooncogene c-myc was studied in freshly isolated bovine vascular smooth muscle cells and in the rat aortic smooth muscle cell line A7r5. Northern analysis showed that LDL increased the mRNA levels of c-myc in both cell lines, the stimulation being 2-fold after 2 h incubation at a concentration of 50 micrograms LDL-protein/ml. High density lipoprotein (HDL) had no effect on c-myc mRNA levels in A7r5 cells. These results demonstrate that LDL, but not HDL, increases intracellular concentrations of c-myc in two different aortic smooth muscle cell lines.  相似文献   

3.
In vitro infection of smooth muscle cells by Chlamydia pneumoniae   总被引:1,自引:0,他引:1  
Recent observations have shown that both Chlamydia pneumoniae antigens and DNA may be found within atherosclerotic lesions. In this study, we evaluated the ability of C. pneumoniae to infect cells that make up atherosclerotic lesions, including endothelial cells, smooth muscle cells, and cholesterol-loaded smooth muscle cells. The organism readily infected rabbit, bovine, and human aortic smooth muscle cells. Cholesterol-loaded smooth muscle cells were even more susceptible to C. pneumoniae infection. Chlamydia trachomatis inefficiently infected smooth muscle cells, demonstrating that this is not a characteristic of all members of the genus Chlamydia. C. pneumoniae infected bovine endothelial cells poorly. This study demonstrates that C. pneumoniae readily infects one of the important types of cells found within atherosclerotic lesions, i.e., smooth muscle cells with and without cholesterol loading.  相似文献   

4.
The regulation of vascular smooth muscle cell (VSMC) proliferation by the fibronectin matrix was tested by treating human umbilical artery smooth muscle cells (HUASMCs) with a recombinant fragment of fibronectin (protein III1-C) that has previously been shown to modulate fibronectin matrix assembly. III1-C inhibited HUASMC proliferation by 75% to 90%. The inhibition of growth was time dependent; III1-C had no effect on DNA synthesis after 0 to 5 hours of treatment but did have an effect at 24 hours and beyond. III1-C did not stimulate apoptosis in these cells, indicating that the inhibition of proliferation was not due to an induction of programmed cell death. The effects of III1-C on cell growth were only specific for normal diploid smooth muscle cells. III1-C had no effect on the proliferation of IMR-90 fibroblasts, endothelial cells, NIH 3T3 cells, or the rat aortic smooth muscle cell line A7r5. However, III1-C did inhibit proliferation by primary rat aortic smooth muscle cells. An analysis of HUASMC fibronectin receptor (integrin alpha5beta1) distribution revealed that III1-C did not inhibit alpha5beta1 localization to focal contacts. Moreover, III1-C had no effect on the relative expression levels of seven different integrin subunits on HUASMCs. However, III1-C did inhibit fibronectin matrix assembly by rat aortic smooth muscle cells, HUASMCs, A7r5 cells, IMR-90 cells, and endothelial cells. An analysis of fibronectin synthesis indicated that the inhibition of fibronectin matrix assembly by III1-C was not due solely to a decrease in fibronectin synthesis. Finally, treatment of HUASMCs with anti-fibronectin monoclonal antibody L8 (which is known to inhibit fibronectin matrix assembly) also decreased the rate of HUASMC DNA synthesis. These results demonstrate that III1-C inhibits VSMC proliferation and suggest that this effect may be mediated by the inhibition of fibronectin matrix assembly.  相似文献   

5.
6.
We studied the effects of FGF-13 and FGF-2 on human lung fibroblasts, dermal microvascular endothelial cells, and aortic smooth muscle cells. FGF-13 induced cell growth of lung fibroblasts and aortic smooth muscle cells but had no effect on dermal vascular endothelial cells. FGF-2 induced cell growth in all the three cell types. FGF-13 and FGF-2 had little effect on IL-6 production by lung fibroblasts and aortic smooth muscle cells and substantially enhanced that induced by IL-1alpha. In contrast, FGF-13 and FGF-2 had little effect on IL-6 production by dermal vascular endothelial cells, either alone or in synergy with IL-1alpha.  相似文献   

7.
Whereas the understanding of the mechanisms underlying skeletal and cardiac muscle development has been increased dramatically in recent years, the understanding of smooth muscle development is still in its infancy. This paper summarizes studies on the ontogeny of chicken smooth muscle cells in the wall of the aorta and aortic arch-derived arteries. Employing immunocytochemistry with antibodies against smooth muscle contractile and extracellular matrix proteins we trace smooth muscle cell patterning from early development throughout adulthood. Comparing late stage embryos to young and adult chickens we demonstrate, for all the stages analyzed, that the cells in the media of aortic arch-derived arteries and of the thoracic aorta are organized in alternating lamellae. The lamellar cells, but not the interlamellar cells, express smooth muscle specific contractile proteins and are surrounded by basement membrane proteins. This smooth muscle cell organization of lamellar and interlamellar cells is fully acquired by embryonic day 11 (ED 11). We further show that, during earlier stages of embryogenesis (ED3 through ED7), cells expressing smooth muscle proteins appear only in the peri-endothelial region of the aortic and aortic arch wall and are organized as a narrow band of cells that does not demonstrate the lamellar-interlamellar pattern. On ED9, infrequent cells organized in lamellar-interlamellar organization can be detected and their frequency increases by ED10. In addition to changes in cell organization, we show that there is a characteristic sequence of contractile and extracellular matrix protein expression during development of the aortic wall. At ED3 the peri-endothelial band of differentiated smooth muscle cells is already positive for smooth muscle alpha actin (alphaSM-actin) and fibronectin. By the next embryonic day the peri-endothelial cell layer is also positive for smooth muscle myosin light chain kinase (SM-MLCK). Subsequently, by ED5 this peri-endothelial band of differentiated smooth muscle cells is positive for alphaSM-actin, SM-MLCK, SM-calponin, fibronectin, and collagen type IV. However, laminin and desmin (characteristic basement membrane and contractile proteins of smooth muscle) are first seen only at the onset of the lamellar-interlamellar cell organization (ED9 to ED10). We conclude that the development of chicken aortic smooth muscle involves transitions in cell organization and in expression of smooth muscle proteins until the adult-like phenotype is achieved by mid-embryogenesis. This detailed analysis of the ontogeny of chick aortic smooth muscle should provide a sound basis for future studies on the regulatory mechanisms underlying vascular smooth muscle development.  相似文献   

8.
The capacity of macrophages to influence directly and indirectly fibrinolytic processes in atherosclerosis was studied using macrophages isolated from atherosclerotic plaques of patients undergoing surgical repair of distal aortic and femoral arteries. These cells were characterized by their morphology, adherence, esterase positivity, and expression of CD14 antigen. Production of plasminogen activator inhibitor type-1 (PAI-1) by plaque macrophages (6.7 +/- 2.7 ng/10(5) cells/24 hours [mean +/- SEM]) was significantly greater than PAI-1 production by blood monocytes isolated simultaneously from the same patients (1.8 +/- 1.5 ng/10(5) cells/24 hours). Production of tissue type plasminogen activator and urokinase type was not augmented compared to blood monocytes. Conditioned medium from cultured plaque macrophages significantly increased production of PAI-1 by endothelial cells (85 +/- 11% above basal) and vascular smooth muscle cells (25 +/- 10%) in vitro. This response was significantly greater than the response to monocyte-conditioned medium (endothelial cells 38 +/- 11%, vascular smooth muscle cells 2.5 +/- 2.0%). Stimulation of endothelial cell PAI-1 production by macrophage-conditioned medium was partially inhibitable by a monoclonal antibody to transforming growth factor-beta. Tissue type plasminogen activator production by endothelial cells and vascular smooth muscle cells was not affected by plaque macrophage- or monocyte-conditioned medium. Urokinase type plasminogen activator production by endothelial cells and vascular smooth muscle cells was undetectable in control medium and was augmented to similar levels in response to plaque macrophage- and monocyte-conditioned media. These results demonstrate upregulation of PAI-1 production by macrophages in atheromatous plaques and the capacity of soluble products from plaque macrophages to upregulate PAI-1 production by endothelial cells and vascular smooth muscle cells in vitro. These data suggest that macrophages in atherosclerotic plaques may inhibit thrombolysis both directly and indirectly by effects of their soluble products on endothelial cells and vascular smooth muscle cells.  相似文献   

9.
Extracellular nucleotides, particularly ATP, are involved in the modulation of arterial vasomotricity via P2 purinoceptors present on smooth muscle and endothelial cells. These nucleotides could also be implicated in the smooth muscle cell hyperplasia observed in intimal lesions. In this study, we tried to define the potential role of the P2Y2 (P2u) purinoceptor by studying its expression in normal and balloon-injured rat aortas. The cloning of a rat P2Y2 cDNA from a rat smooth muscle cell cDNA library made it possible to study P2Y2 expression both by Northern blot and in situ hybridization. Northern blot experiments indicated that P2Y2 mRNA was present in rat medial aortic smooth muscle and in cultured rat aortic smooth muscle cells. In situ hybridization indicated that P2Y2 mRNA was present in endothelial cells of the intima and in some smooth muscle cells scattered throughout the media of adult rat aortas, while almost all medial smooth muscle cells of rat embryo aorta expressed this receptor. In contrast with adult aortic media, the majority of neointimal smooth muscle cells found in aortic intimal lesions either 8 or 20 days after balloon injury were positive for P2Y2 mRNA. Moreover, a subpopulation of neointimal cells localized at the luminal surface could be identified by a higher P2Y2 expression than the underlying neointimal smooth muscle cells. These data showing a strong expression of the P2Y2 purinoceptor in the neointima of injured arteries suggest that extracellular nucleotides may be involved, via this receptor, in the intimal hyperplasia and/or chronic constriction observed at the lesion site, and consequently in the restenotic process.  相似文献   

10.
beta-amyloid toxicity is central to the pathology of Alzheimer's disease. Recent evidence implicates vascular dysfunction as a contributing factor to the dementia of Alzheimer type. Using intravital microscopy we demonstrate that in vivo administration of beta-amyloid produces extensive vascular disruption including endothelial and smooth muscle damage, adhesion and migration of leukocytes across arteries and venules. Amyloid angiopathy with vascular damage and inflammatory changes are hallmarks in the brains of Alzheimer disease victims. The vascular actions of beta-amyloid are distinct from the neurotoxic properties of the peptide and were prevented by the free radical scavenging enzyme superoxide dismutase. Oxygen radical mediated vascular dysfunction may induce ischemic and inflammatory responses leading to neurodegeneration as seen in Alzheimer's disease.  相似文献   

11.
Vascular endothelial growth factor-C (VEGF-C) is a recently characterized member of the VEGF family of angiogenic polypeptides. We demonstrate here that VEGF-C is angiogenic in vitro when added to bovine aortic or lymphatic endothelial (BAE and BLE) cells but has little or no effect on bovine microvascular endothelial (BME) cells. As reported previously for VEGF, VEGF-C and basic fibroblast growth factor (bFGF) induced a synergistic in vitro angiogenic response in all three cells lines. Unexpectedly, VEGF and VEGF-C also synergized in the in vitro angiogenic response when assessed on BAE cells. Characterization of VEGF receptor (VEGFR) expression revealed that BME, BAE, and BLE cell lines express VEGFR-1 and -2, whereas of the three cell lines assessed, only BAE cells express VEGFR-3. We also demonstrate that VEGF-C increases plasminogen activator (PA) activity in the three bovine endothelial cell lines and that this is accompanied by a concomitant increase in PA inhibitor-1. Addition of alpha2-antiplasmin to BME cells co-treated with bFGF and VEGF-C partially inhibited collagen gel invasion. These results demonstrate, first, that by acting in concert with bFGF or VEGF, VEGF-C has a potent synergistic effect on the induction of angiogenesis in vitro and, second, that like VEGF and bFGF, VEGF-C is capable of altering endothelial cell extracellular proteolytic activity. These observations also highlight the notion of context, i.e., that the activity of an angiogenesis-regulating cytokine depends on the presence and concentration of other cytokines in the pericellular environment of the responding endothelial cell.  相似文献   

12.
An understanding of the consequences of autologous vein grafting reveals both the reasons why cryopreserved allogenic veins are being used clinically and how they are most likely to be expected to fail. Autologous vein bypass grafts are characterized by a series of distinct biological properties that influences their in vivo patency. Current surgical practice ensures that the endothelium of vein grafts is preserved at the time of implantation and that there is minimal damage to the smooth muscle cells. After implantation, the endothelial cells show varying degrees of morphological changes that are maximal within the first 3 days after grafting. In autografts, extensive endothelial denudation does not appear to occur. During the initial grafting period, the smooth muscle cells change from a contractile phenotype to a synthetic phenotype, migrate from the media, proliferate in the intima, and lay down connective tissue. Thereafter, endothelial cell changes regress and the smooth muscle cells return to their contractile phenotype. Perioperative manipulation of vein grafts results in decreased endothelial cell function but preservation of smooth muscle cell responsiveness. Postoperatively endothelial cell-mediated relaxation to acetylcholine is lost and smooth muscle cell contractility is decreased. Within 7 days after implantation, smooth muscle cell contractility returns and, with time, becomes markedly greater than that of the control vein. Endothelium-mediated relaxation to acetylcholine never returns in vein grafts and this loss of endothelial cell function appears to be related to receptor-coupled G-protein defects. Smooth muscle cell contractility remains abnormal. Many of the intimal hyperplastic lesions in vein grafts progress to stenosis or become sites of accelerated atherosclerosis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Vitamin A and its derivatives have been postulated to play an important role in renal tubulogenesis and compensatory hypertrophy. This study examined the effects of two carboxylic derivatives of vitamin A on Lewis lung carcinoma-porcine kidney-1 (LLC-PK1) renal tubular epithelial cell mito- and motogenesis and cell size. It was found that all-trans and 13-cis retinoic acids exerted modest, dose-dependent effects to stimulate incorporation of 3H-thymidine into acid-precipitable material of LLC-PK1 cells. The effects of all-trans retinoic acid to promote 3H-thymidine uptake in LLC-PK1 cells modestly enhanced that seen with acidic fibroblastic growth factor. Similar findings of these two retinoic acid derivatives to promote 3H-thymidine uptake and to enhance 3H-thymidine uptake stimulated by another growth factor (platelet-derived growth factor BB) were also observed in cultured bovine aortic smooth muscle cells. Both retinoic acids promoted healing of denuded areas made within confluent monolayers of serum-starved LLC-PK1 cells. All-trans retinoic acid also stimulated recovery of mechanically denuded areas within bovine aortic smooth muscle monolayers. Neither all-trans nor 13-cis retinoic acids s affected cell size as assessed by forward light scatter with flow cytometry, suggesting lack of effect to induce hypertrophy. These results demonstrate that two carboxylic acid derivatives of vitamin A are capable of stimulation of basal and growth factor-induced incorporation of 3H-thymidine uptake into acid-precipitable material and healing of denuded areas in disparate cell types. These findings are compatible with a role for vitamin A and its analogues in the tissue repair process.  相似文献   

14.
The coincidence of neuronal stress induced by intoxication and an overexpression of amyloid precursor protein (APP) in the brains of children was examined. Brains of ten children accidentally intoxicated by poisonous mushroom were studied by means of immunohistochemical methods using monoclonal antibodies generated against different domains of APP and glial cell markers. Overexpression of APP was found in the brain neurons of all intoxicated children. Neurons were immunopositive with the antibodies generated against the middle (amyloid beta protein) domain of APP. No extracellular deposits were found in the tissue. Our results provided, for the first time, the evidence that overexpression of APP concomitant with the neuronal stress is age-independent phenomenon appearing not only in the brain of adults but in very young individuals as well.  相似文献   

15.
Electrical field stimulation (EFS) produced relaxation of contracted arteries in the presence of tetrodotoxin. In the present study the contributions of vascular smooth muscle repolarization and endothelial release of nitric oxide to the relaxation response were investigated using isolated rat tail arteries and bovine aortic endothelial cells (BAEC). Intact and endothelium-denuded rings or intact, pressurized artery segments were contracted with either phenylephrine or KCl prior to EFS. Electrical field stimulation induced a small relaxation in denuded, phenylephrine contracted rings that was inhibited by the K+ channel blockers glibenclamide and BaCl2. In intact, phenylephrine-contracted rings, EFS induced significantly larger relaxations that were inhibited by BaCl2 as well as by L-NAME, an inhibitor of nitric oxide (NO) synthase, and methylene blue. EFS-induced relaxations were completely inhibited when BaCl2 and L-NAME or methylene blue were combined. Exposure to Ca(2+)-free buffer or diltiazem also inhibited the relaxation while ascorbic acid had no effect. Effluent from electrically stimulated BAEC caused denuded, phenylephrine contracted rings to relax. The ability of the effluent to cause relaxation was almost completely blocked by exposure of the BAEC to L-NAME or exposure of the recipient vascular smooth muscle to methylene blue; glibenclamide caused partial blockade. Simultaneous measurements of membrane potential and intraluminal pressure showed that EFS-induced membrane repolarization preceded changes in steady-state pressure. It is concluded that (1) the smooth muscle cells possess an endothelium-independent repolarization mechanism, (2) EFS causes endothelial cells of intact arteries to release NO and possibly a hyperpolarizing factor, (3) EFS of BAEC causes release of NO, and (4) EFS-induced relaxation depends on vascular smooth muscle cell membrane repolarization and endothelial cell release of vasoactive substances.  相似文献   

16.
beta-Amyloid peptide (A beta), the main constituent of senile plaques and diffuse amyloid deposits in Alzheimer's diseased brain, was shown to initiate the development of oxidative stress in neuronal cell cultures. Toxic lots of A beta form free radical species in aqueous solution. It was proposed that A beta-derived free radicals can directly damage cell proteins via oxidative modification. Recently we reported that synthetic A beta can interact with glutamine synthetase (GS) and induce inactivation of this enzyme. In the present study we present the evidence that toxic A beta(25-35) induces the oxidation of pure GS in vitro. It was found that inactivation of GS by A beta, as well as the oxidation of GS by metal-catalyzed oxidation system, is accompanied by an increase of protein carbonyl content. As it was reported previously by our laboratory, radicalization of A beta is not iron or peroxide-dependent. Our present observations consistently show that toxic A beta does not need iron or peroxide to oxidize GS. However, treatment of GS with the peptide, iron and peroxide together significantly stimulates the protein carbonyl formation. Here we report also that A beta(25-35) induces carbonyl formation in BSA. Our results demonstrate that beta-peptide, as well as other free radical generators, induces carbonyl formation when brought into contact with different proteins.  相似文献   

17.
The literature implicating free radical reactions in the genesis of cerebral vasospasm following aneurysmal subarachnoid hemorrhage is reviewed. While this condition has features of a prototypical free radical-mediated disease and a plausible theory can be outlined, data to support the theory are limited. An association of lipid peroxidation with vasospasm has been observed, but more sophisticated techniques for detection of free radicals and for detection of free radical damage to arterial wall proteins and nucleic acids have not been used. There are conflicting reports about efficacy of various antioxidant treatments for vasospasm. In these studies, concomitant experiments have usually not confirmed that the treatments have decreased free radicals or lipid peroxides in cerebrospinal fluid. Because smooth muscle contraction is involved in vasospasm, it would be interesting to investigate the actions of free radicals on smooth muscle cells using, for example, isometric tension recordings and patch clamp techniques. Studies of cardiac myocytes indicate that free radicals alter conductances through potassium and calcium channels and through the sodium-calcium exchanger and may result in elevations in intracellular calcium. Few studies have been performed on cerebral smooth muscle cells. In one study, exposure of cerebrovascular smooth muscle cells to free radicals resulted in increased outward currents, decreased membrane resistance, cell contraction, appearance of membrane blebs, and cell death. In summary, more investigations using better experimental techniques are required before free radicals and reactions induced by them can be said with certainty to be the primary cause of vasospasm.  相似文献   

18.
In this study, we evaluated the ability of low molecular weight manganese-based superoxide dismutase mimetics to attenuate neutrophil-mediated oxygen radical damage to human aortic endothelial cells in vitro. Human neutrophils, when exposed to tumor necrosis factor-alpha and the complement compound C5a, induced endothelial damage assessed by the release of 51Cr into the medium. This damage correlated with the amount of superoxide generated by neutrophils. Three superoxide dismutase mimetics, with catalytic rate constants for superoxide dismutation ranging from 4 to 9 x 10(7) M-1 S-1, inhibited neutrophil- or xanthine oxidase-mediated endothelial cell injury in a concentration-dependent manner. A similar manganese-based compound with no detectable superoxide dismutase activity was ineffective in inhibiting injury. Fluorescent studies of the neutrophil respiratory burst showed that the superoxide dismutase mimetics were protective without interfering with the generation of superoxide by activated neutrophils. Catalase, elastase inhibitors, and desferrioxamine mesylate (an iron chelator and hydroxyl radical scavenger) were not protective against cell injury. This investigation demonstrates that neutrophil-mediated human aortic endothelial cell injury in vitro is mediated by the superoxide anion and that low molecular weight manganese-based superoxide dismutase mimetics are effective in abrogating this damage.  相似文献   

19.
Concentrations of up to 1.5 milliunits/ml xanthine oxidase (XO) (1.1 micrograms/ml) are found circulating in plasma during diverse inflammatory events. The saturable, high affinity binding of extracellular XO to vascular endothelium and the effects of cell binding on both XO catalytic activity and differentiated vascular cell function are reported herein. Xanthine oxidase purified from bovine cream bound specifically and with high affinity (Kd = 6 nM) at 4 degreesC to bovine aortic endothelial cells, increasing cell XO specific activity up to 10-fold. Xanthine oxidase-cell binding was not inhibited by serum or albumin and was partially inhibited by the addition of heparin. Pretreatment of endothelial cells with chondroitinase, but not heparinase or heparitinase, diminished endothelial binding by approximately 50%, suggesting association with chondroitin sulfate proteoglycans. Analysis of rates of superoxide production by soluble and cell-bound XO revealed that endothelial binding did not alter the percentage of univalent reduction of oxygen to superoxide. Comparison of the extent of CuZn-SOD inhibition of native and succinoylated cytochrome c reduction by cell-bound XO indicated that XO-dependent superoxide production was occurring in a cell compartment inaccessible to CuZn-SOD. This was further supported by the observation of a shift of exogenously added XO from extracellular binding sites to intracellular compartments, as indicated by both protease-reversible cell binding and immunocytochemical localization studies. Endothelium-bound XO also inhibited nitric oxide-dependent cGMP production by smooth muscle cell co-cultures in an SOD-resistant manner. This data supports the concept that circulating XO can bind to vascular cells, impairing cell function via oxidative mechanisms, and explains how vascular XO activity diminishes vasodilatory responses to acetylcholine in hypercholesterolemic rabbits and atherosclerotic humans. The ubiquity of cell-XO binding and endocytosis as a fundamental mechanism of oxidative tissue injury is also affirmed by the significant extent of XO binding to human vascular endothelial cells, rat lung type 2 alveolar epthelial cells, and fibroblasts.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号