首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A comparative analysis of the frequency parameters of echo signals from artificial reflectors of different shapes and from a natural spill-type flaw has been performed. The use of the instantaneous frequencies of ultrasonic signals that correspond to certain instants inside a pulse was suggested as an informative parameter for determining the flaw type. Instantaneous frequency is estimated based on the algorithm of the continuous wavelet transform, which increases the noise immunity of the method. It is shown that for the algorithm to be practically implemented it is appropriate to present the results in the form of dimensionless parameters, namely, normalized frequency deviations determined between the pulse center, edge, and tail. Their joint application makes it possible, in particular, to reliably distinguish echo signals that are reflected at junction flaws that rise to the surface of a test object (notches, dihedral angles, and spills of the weld joints), flat specimen surfaces, and local flaws, such as cylindrical side through holes and flat bottom drills.  相似文献   

2.
A method of automated ultrasonic testing based on the use of a PAA flaw detector for the recording of echo signals followed by the reconstruction of the image of reflectors by applying the 3D variant of the method of projection in the spectral space (3D-PSS) is considered. Customized setting of the PAA flaw detector makes it possible to simulate the operation of many single-element transducers with different angles of incidence. This approach allows one to obtain the images of reflectors with a high resolution and a high signal-to-noise ratio at a depth of more than 100 mm. A procedure for the calibration of an antenna array on a prism operating in the mode of emulation of several piezoelectric transducers with different angles of incidence is discussed. The results of a testing a fragment of the support billet for the ITER diverter when obtaining the images by the classical PAA method and with the use of 3D processing, which demonstrate the efficiency of the developed testing technology, are presented.  相似文献   

3.
为了能从含噪声金属材料超声检测信号中有效识别出微小缺陷回波,建立了金属材料超声反射信号模型并提出了基于相关系数的微小缺陷回波识别方法。对含微小缺陷金属材料超声脉冲反射信号的成分进行分析,建立了基于散射声场与高斯回波理论的优化超声回波模型。设计了超声缺陷回波位置识别方法。该方法对超声脉冲反射信号去噪后,取探头发射脉冲信号为参考信号;然后与去噪后的信号逐段求解相关系数;最后对该相关系数序列进行阈值化处理,获得缺陷回波在超声回波信号中的位置。将利用上述优化超声回波模型生成的超声反射信号及其频谱与实验获得的金属材料超声反射信号及其频谱进行了对比,结果表明:两者的时频域特征具有一致性。当将阈值设定为相关系数序列最大值的60%时,能够有效从超声背散射信号中识别出金属材料微小缺陷回波。  相似文献   

4.
The problem of ultrasonic flaw metering consists in the obtainment of information on the reflector type, its dimensions, and the coordinates of its location. As the accuracy of determining the parameters of a discontinuity increases, the results of ultrasonic testing become more reliable. A highquality image of reflectors, which is reconstructed using the C-SAFT method with consideration for multiple reflections of pulses from the boundaries of a test object that makes it possible to determine the types and dimensions of reflectors, can be considered as one of the tools of flaw metering. However, the C-SAFT method disregards the features of reflections from discontinuities with nonuniform scattering indicatrices. As a development of flaw-metering methods, it is proposed to determine the parameters of a discontinuity from the results of comparison of the measured echo signals and estimated echo signals, which are calculated as functions of the discontinuity parameters. The results of using the proposed methods of ultrasonic flaw metering in numerical and model experiments, which demonstrate the working capacity of the proposed approach, are presented.  相似文献   

5.
The received signal in ultrasonic pulse-echo inspection can be modeled as a convolution between an impulse response and the reflection sequence, which is the impulse characteristic of the inspected object. Deconvolution aims at approximately inverting this process to improve the time resolution so that the overlap between echoes from closely spaced reflectors becomes small. This paper presents a modified minimum entropy blind deconvolution algorithm for deconvolving ultrasonic signals. Enhancement of the resolution is achieved by using the presented method. In addition, the presented approach will, in many cases, lead to a faster computation. A nonlinear function is the key point to the efficiency of the modified blind deconvolution algorithm, which is used to increase the sparsity of the iteration output and to decrease the influence of the added noise by replacing each iteration output by output of the nonlinear function. Simulations showed the efficiency of the modification as compared with minimum entropy deconvolution when deconvolving synthetic ultrasonic signals. Experimental results using real ultrasonic data evaluated further that the exact solution consistently yields good performance. The thickness of a thin steel sample can be calculated by the modified blind deconvolution filter with a reasonable accuracy.  相似文献   

6.
The results of the visualization of artificial reflectors of different shapes and a natural flaw of the faulty-fusion type in the bottom run are presented. The results of the evaluation of the instantaneous frequency, which is proposed as an additional informative index for shape classification of flaws, are presented for the same reflectors. A comparative analysis of the data that were obtained by these two methods was performed. The measurement results are represented in the form of B-scans for phased arrays, which provide a clear idea of the spatial location and configuration of reflectors, and in the form of diagrams of the dependences of the normalized frequency deviations for single dual transducers.  相似文献   

7.
A modified method of combined SAFT (C-SAFT) for restoring the images of reflectors is considered; it allows the multiple reflection of a pulse from the boundaries of the wall of a cylindrical inspection object. To verify the efficiency of the proposed algorithm, images of a crack were restored from echo signals that were calculated using the CIVA software package, which is intended for modeling the propagation and scattering of ultrasonic pulses. It was shown in a model experiment that the consideration of changes in the pulse phase during reflection from the inspection-object boundaries at various incident angles of an S-wave in the image-restoration algorithm increases the frontal resolution by more than two times. The consideration of five reflections from the inspection-object boundaries made it possible to obtain images of reflectors by the M-C-SAFT method using many acoustic schemes. The images allow one to determine the type of defects, as well as their dimensions and location in the depth of the wall of a pipeline that is 720 mm in diameter.  相似文献   

8.
A pulsed operating mode of a piezoelectric plate placed into a liquid is considered. The problem is solved for the application of exciting electric pulses with a duration that is a multiple of the duration of a sinusoid half-period at the natural frequency of a piezoelectric plate. For different degrees of plate damping, the dynamics of changes in the shape of an acoustic pulse are studied as a function of an electrically excited pulse duration. The durations and amplitudes of acoustic signals are evaluated. The problem is solved by the calculation-theoretical method via application of both the apparatus of schemes-analogues of piezoelectric transducers and the spectral method based on a Fourier transform.  相似文献   

9.
This paper proposes a measurement technique for two-phase bubbly and slug flows using ultrasound. In order to obtain both liquid and gas velocity distributions simultaneously, a new technique for separating liquid and gas velocity data is developed. The technique employs a unique ultrasonic transducer referred to as multi-wave transducer (TDX). The multi-wave TDX consists of two kinds of ultrasonic piezoelectric elements which have different resonant frequencies. The central element of 3 mm diameter has a basic frequency of 8 MHz and the outer element has a basic frequency of 2 MHz. The multi-wave TDX can emit the two ultrasonic frequencies independently. In our previous investigations, both elements were connected with two ultrasonic velocity profile (UVP) monitors to measure liquid and bubble velocity distributions. However, the technique was limited to the measurement of bubbly flows at low void-fraction. Furthermore, it was impossible to synchronize the instantaneous velocities of liquid and bubbles because of the facility limitation. In order to overcome these disadvantages, cross-correlation method is employed for the measurements in this study. In order to apply the technique to flow measurements, ultrasound pressure fields are measured. As a result, it is found that the TDX must be set 20 mm away from the test section. The technique is applied to measuring bubbly and slug flows. By the combination of 2 and 8 MHz ultrasonic echo signals, the echo signals are distinguished between reflected from particles and bubbles. Compared with the results of obtaining with the multi-wave method and a high-speed camera, it is confirmed that the technique can separate the information of liquid and gas phases at a sampling rate of 1000 Hz.  相似文献   

10.
A method that is proposed for calibrating an antenna array that is installed on a wedge provides refinement of the coordinates of the centers of piezoelectric elements. Precise knowledge of the coordinates will make it possible to obtain images in which reflections from reflectors will coincide with their actual positions with an accuracy no worse than a half wavelength. The calibration principle involves the minimization of the objective function that describes the difference between the antenna-array-measured echo signals from a 2-mm-diameter side drilled hole (SDH) at a depth of 12 mm and the calculated echo signals from the same hole. The algorithm operation was tested for echo signals calculated in the CIVA program. The calibration results for several antenna arrays on wedges and images of an SDH are presented, which were obtained using the method for digital antenna-array focusing (DAAF) for various acoustic systems.  相似文献   

11.
魏玉淼  董永贵  李昊 《仪器仪表学报》2016,37(11):2465-2472
针对微机械陀螺非线性特性的测量问题,研究了一种频率步进式正弦脉冲激励的自由衰减振荡测量方法。在谐振频率附近,采用步进式正弦脉冲序列作为激励信号,得到一组包含系统不同程度非线性动力学特征的自由振动响应信号。通过Hilbert变换提取自由振动信号的瞬时幅值和瞬时频率,计算得到骨架曲线簇,即可实现非线性动力学特性的实验测量。以Duffing系统为例,对不同信噪比自由振动响应信号进行了数值仿真,结果表明这种方法比FREEVIB方法具有更好的抗噪声性能。对一种环型振动微陀螺进行了实验测试,所得到的骨架曲线与传统扫频方式的测量结果一致。作为一种测试手段,这种方法同样可用于其他类型微机械谐振器动力学特性的实验测试。  相似文献   

12.
It is proposed to use the maximum-entropy method (MEM) for processing ultrasonic echo signals for reconstructing images of reflectors with a high signal-to-noise ratio and a low level of “side lobes” of the point-scattering function. When processing echo signals, the pulse-propagation paths can be considered taking reflections from irregular boundaries of a tested object with the wave-type transformation into account. In model experiments, images of reflectors were obtained taking the refractions of rays at the rough surface into account, when echo signals were recorded both using an ordinary single-element transducer in the transceiver mode and an antenna array that recorded echo signals in the double- and triple-scanning modes. The reconstructed images have a resolution that exceeds the resolution according to the Rayleigh criterion. The MEM makes it possible to obtain images of flaws with low-level side lobes, when less than 10% of the complete set of echo signals are used.  相似文献   

13.
基于瞬时频率熵的超声缺陷检测   总被引:2,自引:0,他引:2  
杜秀丽  沈毅  王艳  徐止铎 《中国机械工程》2006,17(18):1899-1902
根据超声无损检测中缺陷和噪声反射回波的瞬时频率的差别,提出利用超声信号瞬时频率在一移动窗内熵的信息,估计缺陷的时频位置。瞬时频率熵方法使得用Wigner—Ville分布表示超声信号时,既能利用Wigner—Ville分布的重要性质,又能实现缺陷的准确定位。对仿真数据和实际探伤数据的实验结果分析表明,瞬时频率熵方法不仅能够识别单个缺陷,也能有效地检测多个缺陷。  相似文献   

14.
The method of finite differences in time domain (FDTD) can be used to calculate echo signals in numerical ultrasonic-inspection experiments. As the FDTD method is based on the explicit numerical solution of the wave equation for elastic medium, it can be used to take account of the emergence of a run round wave on a bulk reflector, the effects of a longitudinal wave transforming into a lateral one in the scattering of ultrasound on a crack, and rescattering of pulses between reflectors and test object boundaries. Numerical solution of the vector wave equation by the FDTD method, in contrast to the modelling methods based on the theory of ray tubes, enables a more accurate modeling of ultrasonic inspection results. In this article, three options are considered for suppressing pulse reflections from computational grid boundaries. Calculating the direct problem of the propagation of elastic vibrations through a solid body by the FDTD method may prove useful when solving the inverse coefficient problem of nondestructive ultrasonic inspection.  相似文献   

15.
针对微型器件封装对非接触式微胶量的需求,研制了压电驱动微点胶器,利用压电陶瓷管挤压毛细管产生的瞬时变形实现了微胶滴的分配。分析了毛细管内的流体行为及液滴形成条件;基于多物理场耦合的方法,建立了压电微喷的三设备(压电陶瓷、毛细管、胶体)耦合模型。然后,讨论了驱动电压、喷嘴直径、胶体黏度对控制胶滴形成的影响。在构建的实验平台上,开展了控制胶滴形成的实验研究。分析了多控制参数(喷嘴直径、胶体黏度、电压幅值、脉冲宽度)的复合作用,通过匹配相应的参数实现了pL级微胶滴的非接触式分配。实验结果显示:使用黏度为30mPa·s胶体,直径为10μm的喷嘴,在驱动电压幅值为50V,脉冲宽度为37μs等参数配置下,可获得最小胶滴的体积为8.31pL。实验结果验证了所提出方法和研制工具的有效性。  相似文献   

16.
Heat dissipation in ultrasonic motors should be limited, especially in precision applications since it causes thermal deformations. Therefore, an easy-to-understand mechanical model was developed to simulate heat dissipation in an ultrasonic motor. This model involves the dielectric, piezoelectric and mechanical hysteretic losses of the piezoelectric material. Both the model and the experiments lead to the same recommendations to minimise the heat dissipation for ultrasonic motors. Large piezoactuators, exciting passive structures at high resonance frequencies result in a minimum heat dissipation. Furthermore, it was shown that the optimal frequency regarding minimal heat dissipation lies between the resonance and the antiresonance frequency of the system, close to the resonance frequency.  相似文献   

17.
为了保证压电换能器谐振频率的一致性以及其长期工作的稳定性,提高换能器电声转换效率,介绍了利用检测谐振频率和扭矩压力来判别夹心式压电换能器装配质量的方法。在研究了压电效应的基础上,提出了通过检测压电陶瓷受压产生电荷量的方法来精确判别其装配质量,解决了其装配质量不稳定的问题。研究结果表明,该方法提高了装配精度和一致性,使其性能稳定可靠。  相似文献   

18.
In the last years, non-destructive ultrasonic testing methods are more and more frequently employed in order to investigate the drying and curing processes of different coatings. Among them an ultrasonic reflection method was developed allowing the simultaneous measurement with longitudinal and transversal waves. In order to generate the ultrasonic pulse, piezoelectric ceramics or oxides are usually used as transducer materials which are connected to a delay line. Here, we demonstrate a similar approach for the ultrasonic reflection method installing piezoelectric polymers as ultrasonic transducer materials. In detail, poly(vinylidene fluoride and trifluoroethylene) [P(VDF-TrFE)] copolymers were prepared as piezoelectric transducer layers directly onto the metallization of glass delay lines avoiding additional bonding processes. The film preparation was carried out by solvent casting the polymer onto an area with a diameter of 12 mm and is optimized so that relatively homogeneous polymer layers with thicknesses between 14 and 35 μm are adjusted by the deposited amount of the polymer. Electrical poling renders the polymer piezoelectric. The ultrasonic properties of the P(VDF-TrFE) transducer and their usability for the ultrasonic reflection method are described also in comparison to previous measurements using LiNbO(3) transducer.  相似文献   

19.
研究一种两自由度悬臂梁压电发电装置,以提高悬臂梁式压电发电装置在环境振源振动频率波动情况下的发电能力。建立了两自由度悬臂梁压电发电装置的频率特性理论模型,并对该理论模型进行了有限元仿真验证,结果显示理论计算与有限元仿真结果基本一致。对两自由度悬臂梁压电发电装置的频率特性模型进行了数值模拟,模拟显示:装置的前两阶模态频率比随着长度比、宽度比、厚度比及质量块的质量比的增大均出现一个最小值,且在长度比为0.8,宽度比为2.0,厚度比为1.0,质量块的质量比为0.5时,装置的前两阶模态频率比最小,结果表明通过合理设计两自由度悬臂梁压电发电装置的结构参数,可以使得装置的前两阶模态频率最接近。最后,实例设计了两自由度悬臂梁压电发电装置,并进行了试验测试,证实了优化后的两自由度悬臂梁压电发电装置具有宽频带发电能力。  相似文献   

20.
Ultrasound is widely used and studied to satisfy the increased demands of the Non-destructive evaluation (NDE) and testing of underwater structures. However, because of the large size and mass of underwater structures, such as submarines, ship hulls, or nuclear reactor pipe lines, it is difficult to inspect the structures during operation. This underwater NDE technology is challenging but could be highly beneficial because the time and cost of maintenance will be effectively reduced. We propose an NDE method for immersed structures using an ultrasonic propagation imaging system with a piezoelectric sensor. The underwater sensing capability of a piezoelectric sensor is experimentally demonstrated using an aluminum plate specimen. A piezoelectric sensor can compensate for the decreased signal amplitudes due to leaky waves that are generated on interfaces between structures and water, since water transmits signals better than air. Additionally, a piezoelectric sensor can be applied even if the water surface is oscillating. Using these properties, the laser induced guided Ultrasonic propagation imager (UPI) inspected a T-shaped steel structure with a 2-mm crack on the weld zone. The inspection was implemented in three cases: a specimen without water, a specimen immersed in water and a specimen immersed in water with a randomly oscillating surface. The crack was visualized and measured using the ultrasonic wave propagation imaging algorithm, the adjacent wave subtraction algorithm, and the variable time window amplitude mapping algorithm. In the case with a randomly oscillating water surface, the laser pulse was refracted randomly based on Snell’s law. This phenomenon may cause degradation of the inspecting results. However, a repeated scanning process and outlier elimination led to an improved signal-to-noise ratio such that it was able to detect the crack. These results demonstrate the possibility to apply the laser UPI to submerged structures even if the water surface is randomly oscillating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号