首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以高岭土和白云石为主要原料,通过反应烧结法制备低成本大孔陶瓷膜支撑体,对制备的支撑体进行了结构和性能表征.结果表明:在高岭土中引入质量分数为20%的白云石,可显著抑制高岭土的高温烧结;加入白云石后制备的支撑体在1 150~1 300℃保温1h后,主晶相为莫来石、堇青石和钙长石,平均孔径和抗弯强度随烧成温度升高而增大,而水通量和孔隙率降低;加入20%白云石并在1 250℃保温1 h制各的大孔支撑体的孔隙率和平均孔径分别为44.6%和4.7μm,抗弯强度和纯净水通量分别达到47.6MPa和10.76m3/(m2·h·bar).  相似文献   

2.
《Ceramics International》2023,49(12):19798-19805
Herein, we report an in-situ reaction-bonded SiC membrane sintered at low temperature using a solid waste (i.e. coal gangue) as the sintering aid to form strong neck connections. The effects of sintering temperature and coal gangue proportion on their properties regarding pore size, open porosity, bending strength and pure water permeability were investigated. The single-channel tubular SiC membrane sintered at 1300 °C with a coal gangue proportion of 12 wt% was optimal, exhibiting an average pore size of 2.78 μm, a open porosity of 47.08%, a bending strength of 34.01 ± 1.3 MPa and a high water permeability of 83967 L m−2 h−1 bar−1. The membrane could completely reject D50 = 0.87 μm SiC solids and presented a steady-state water permeability of 458 L m−2 h−1·bar−1. The SiC membrane could be regenerated through ultrasonication and its steady-state water permeability was almost unchanged for 3 cycles, proving its mechanical robustness. This work may appeal to the practical low-cost production of high-performance SiC membranes.  相似文献   

3.
《分离科学与技术》2012,47(8):1241-1249
In this article, we have reported the fabrication of stable macroporous ceramic support using low-cost inorganic raw materials by uniaxial dry compaction technique. The supports were prepared by mixing of inexpensive raw materials such as kaolin, quartz, calcium carbonate, sodium carbonate, boric acid, sodium metasilicate, and polyvinyl alcohol as a binder. The prepared green supports were sintered at different temperatures ranging between 900 and 1000°C. The raw materials and the sintered supports were characterized by thermogravimetric analysis, particle size distribution (PSD), X-ray diffraction, and scanning electron microscopy analysis. The influence of sintering temperature on the membrane structure, porosity, flexural strength, chemical stability, and the pure water permeability was also examined. It was observed that the average pore size and the flexural strength of the sintered supports increase with an increase in the sintering temperature. The porosity of the sintered supports was obtained in the ranges between 22 and 40%. The chemical stability of the sintered supports was found to be good. Based on the results obtained, the support sintered at 950°C (porosity of 30%, mechanical strength of 28 MPa, and average pore size of 3.45 µm) was considered as the optimum support for membrane applications. The ceramic support cost was estimated to be $67/m2 according to the raw material price. Henceforth, these low-cost membrane supports with better properties could be suggested for cheaper application in chemical and biochemical processes.  相似文献   

4.
The purpose of this work is the development of microporous ceramic materials based on kaolin for a filtration process. Flat ceramic membrane supports were prepared from the mixtures of kaolin, phosphoric acid and starch. Porosity, permeability and mechanical properties of those supports were studied as functions of the amount of phosphoric acid, the sintering temperature and the compaction pressure. The rupture strength and the permeability of the ceramic membrane, increase with the content of phosphoric acid until 5 mass%. The porosity decreases with both the sintering temperature rise and the addition of phosphoric acid. The addition of 5 to 10 mass% of phosphoric acid and 10 mass% of starch to the kaolin supports sintered at 1100 °C for 2 h leads to a satisfied permeability and mechanical proprieties in the filtration application. The elaborated support was characterized using two analytical methods: DRX, 27Al and 31P MAS-NMR. The obtained analytical data indicate the presence of an AlPO4 high temperature phase at 1100 °C.  相似文献   

5.
New eco-friendly mass formulations based on the scheelite and kaolin residues were developed to manufacture ceramic tiles. The start raw materials (scheelite residue, kaolin residue, feldspar and plastic clay) were characterized as to their chemical composition, main mineralogical phases, and particle size distribution. Three ceramic masses with 37 wt% of kaolin residues and different contents of the scheelite residues (2 wt%, 5 wt%, and 10 wt%) were formulated. The mass formulations were uniaxially pressed (19.6 MPa) to obtain samples with dimensions of 60 mm × 40 mm x 7 mm, which were dried at 110 °C/24 h, and sintered at different temperatures (1150 °C, 1200 °C, and 1250 °C). Dilatometric experiments measured thermal expansion coefficients. The results are in agreement with the literature, i.e., 6.0 μm/m°C?1, 6.1 μm/m°C?1 and 6.4 μm/m°C?1 to samples with 2 wt%, 5 wt%, and 10 wt% of scheelite residues, respectively. The potential of the mass formulations studied was evaluated by linear shrinkage, water absorption, apparent density, apparent porosity, flexural strength, and mineralogical phase identification. The results were compared with the literature experimental data and International Technical Standards. It was concluded that the samples investigated have suitable properties for use as ceramic and porcelain tiles. Also, the pseudowollastonite and mullite phases were identified in the sample with the lowest concentration of scheelite residue. These phases are responsible for increasing flexural strength.  相似文献   

6.
The present paper reports the in situ synthesis of porous ceramic supports from local kaolin and kaolin–doloma mixtures. These raw materials have been dictated by their natural abundance (low price) and their beneficial properties. In this work, four different processing routes have been presented. In addition, two support shapes are of particular interest: tubular and flat configurations, which are currently the most used supports in membrane research. Tubular configurations have been produced by extrusion method whereas flat configurations have been produced by both dry-pressing and roll pressing. The doloma addition to kaolin has a positive effect on the porosity ratio of supports compared to those prepared from kaolin alone. Moreover, the influence of the sintering temperature on the total porosity, average pore size, pore size distribution and strength of supports has been investigated. It has been found that higher sintering temperatures (1250 °C) were needed to obtain a uniform pore size distribution within total porosity ratios of 43 and, 51% when processes 3 and 2 were applied, respectively.  相似文献   

7.
A new type of porous ceramic supports for membranes has been designed. The new supports have been fabricated from polycrystalline quartz sand and calcite raw materials. In this work, two configurations of support (tubular and flat) have been produced using extrusion method. The open porosity, the pore size distribution, the average pore size (APS), the strength and the permeability of sintered supports have been found to depend mainly on the weight ratio of calcite (CaCO3) additive. The results showed that with the addition of 15–35 wt.% of calcite and sintering temperature of about 1375 °C for 1 h the best characteristics of sintered supports could be obtained. The developed tubular ceramic supports with the APS 6.3–12 μm, open porosity 42–55%, the water permeability (16–68 m3/h m2 bar) and flexural strength 8–18 MPa hopefully offer many perspectives for a wide use in membranes technology.  相似文献   

8.
《Ceramics International》2017,43(18):16283-16291
Ceramic hollow fibers from natural dolomite with different pore structures have been designed. The unique hollow fibers were produced by the phase inversion method and applying different sintering temperatures. The hollow fiber precursor presented coagulated polymers through the fiber thickness due to the high granulometric size of the used dolomite material (11.3–47.2 µm). The fiber sintered at 400 °C presented mechanical strength of 4.5 MPa and water permeability of 84.7 L h−1 m−2 kPa−1. The increase in the sintering temperature up to 1250 °C resulted in fragile hollow fibers due to dolomite transformations that resulted in gas release and a significant mass loss of 33.7%. At 1350 °C, the liquid phase sintering mechanism occurred and the dolomite hollow fiber sintered at 1350 °C presented mechanical strength of 5.5 MPa and water permeability of 2219 L h−1 m−2 kPa−1. Doloma dissolution in water was investigated and calcium concentration was increased from 0.72 (pure water) to 2.905 ppm for a contact time from 4 h between the fiber sintered at 1250 °C and pure water. However, this dissolution did not decrease the mechanical resistance of the fiber. These results suggest the potential of applying natural dolomite for producing low cost membranes or substrates. The hollow fiber sintered at 400 °C is suggested to be used as a proper separation medium, while the hollow fiber sintered at 1350 °C may be used as a substrate for the deposition of a separation layer to be used in gas separations. The high porosity of the fiber sintered at 1250 °C suggests its application as a support for the impregnation of functional materials. Thus, depending on the applied sintering temperature the dolomite membrane can be used in different applications.  相似文献   

9.
《Ceramics International》2015,41(7):8282-8287
The natural mineral kaolin combined with alumina additives Al(OH)3,α-Al2O3 and AlF3 was used to prepare porous mullite ceramic membrane supports using an in-situ reaction. The effects of composition and sintering temperature on the sintering behavior, pore structure, permeability and microstructure of the resulting porous mullite supports were extensively investigated. The experimental results showed that excess SiO2 in kaolin can be consumed by adding alumina precursors, which resulted in a stiff skeleton of interlinked needle-like mullite crystals in-situ during the sintering. The needle-like mullite crystals touched each other and formed a short network, which acted as a porous skeletal network structure. This network resulted in a highly permeable porous structure. The resulting support is suitable for the preparation of asymmetric ceramic membranes. The densification and pore structure of the support can be effectively adjusted by control of the quantity of alumina precursors in the composition and the sintering temperature. Sintering the subject mullite compositions at 1500 °C for two hours resulted in support structures with an average porosity of 45.9%, an average pore size of 1.3 µm and a penetrating porosity of 35.9%.  相似文献   

10.
《Applied Clay Science》2010,48(3-4):317-324
Low-cost ceramic microfiltration membranes were prepared using clay of IIT Guwahati. Two membranes were prepared by paste casting followed by sintering at different temperatures, the first one from clay only (membrane A) and the second one from clay with small amounts of sodium carbonate, sodium metasilicate and boric acid (membrane B). Both the membranes were characterized by TGA, SEM, XRD, water permeability test and acid–base treatment. With the increase of sintering temperature, pore size as well as permeability and flexural strength were increasing while porosity and pore density were decreasing. The overall performance of membrane B was better than membrane A. The average pore size, porosity, pore density and flexural strength of membrane B sintered at 1000 °C were 4.58 μm, 0.42, 2.06 × 1010 m 2 and 11.55 MPa respectively. This membrane was used for the removal of chromate from aqueous solutions by micellar enhanced microfiltration (MEMF) using cetylpyridinium chloride (CPC). 100% rejection of chromate ions were obtained at a feed ratio (CPC/chromate) of 10. Based on raw material prices, the membrane cost was estimated to be $19/m2. The prepared low-cost membrane showed good promise for the treatment of wastewater containing such heavy metals.  相似文献   

11.
《Ceramics International》2015,41(6):7374-7380
Porous magnesium aluminate spinel (MgAl2O4) ceramic supports were fabricated by reactive sintering from low-cost bauxite and magnesite at different temperatures ranging from 1100 to 1400 °C and their sintering behavior and phase evolution were evaluated. The effects of sintering temperature on the pore structure, size and distribution as well as on the main properties of spinel ceramic supports such as flexural strength, nitrogen permeation flux and chemical resistance were investigated. The supports prepared at 1300 °C showed a homogeneous pore structure with the average pore size of 4.42 μm, and exhibited high flexural strength (35.6 MPa), high gas permeability (with nitrogen gas flux of 3057 m3 m−2 h−1 under a trans-membrane pressure of 0.1 MPa) and excellent chemical resistance.  相似文献   

12.
New gel system for preparing mullite porous ceramics by gel-casting freeze-drying was proposed, using pectin as gel source and alumina and silica as raw materials. Directional channels were formed due to sublimation of water during freeze-drying and decomposition of pectin during high temperature sintering to prepare porous mullite ceramic membranes. Effects of solid content on the properties of mullite ceramics in terms of phase composition, microstructure, apparent porosity, bulk density, pore size distribution, compressive strength, thermal conductivity, pressure drop, and gas permeability were investigated. It was found that prepared porous mullite possessed high apparent porosity (56.04%–75.34%), low bulk density (.77–1.37 g/cm3), uniform pore size distribution, relatively high compressive strength (.61–3.03 MPa), low thermal conductivity (.224–.329 W/(m·K)), high gas permeability coefficient (1.11 × 10−10–4.73 × 10−11 m2), and gas permeance (2.18 × 10−2–9.32 × 10−3 mol⋅m−2⋅s−1⋅Pa−1). These properties make prepared lightweight mullite ceramic membranes promising for application in high temperature flue gas filtration. Proposed gel system is expected to provide a new route to prepare porous ceramics with high porosity and directional channels.  相似文献   

13.
《Ceramics International》2023,49(15):25371-25380
In this work, ultrathin planar alumina-based ceramic membranes with asymmetric structure and thickness less than 0.85 mm were successfully prepared by one-step molding phase transformation/sintering method using low-cost black talc (BT) nanosheets for the first time. The microstructure, pore structure, mechanical strength and permeability of novel ceramic membranes were systematically investigated with different BT amount and sintering temperatures. The doping of BT nanosheets effectively modulated the interfacial bonding area and strength between the grains, achieving significant increase in flexural strength through the evolution of the dense layer structure. The asymmetric structural features formed by the phase transformation/sintering process in combination with polymer substrate significantly reduced the thickness of effective separation layer, thus weakening the loss of flux caused by the densification of the film layer due to the interfacial modification process. Moreover, the organic carbon layers between BT layers were oxidized during the sintering process, forming fine pores and increasing the porosity, which showed to be unique characteristic different from other clay mineral materials. The prepared composite membrane had the pure water flux up to 16335 L m−2 h−1/bar at 1350 °C sintering, which achieved stable permeation of ∼5200 L m−2 h−1/bar and high retention over 90% for O/W emulsions.  相似文献   

14.
《Ceramics International》2020,46(7):8689-8694
In this article, we report the effects of slurry formulation and sintering conditions on the microstructure and permeability of porous titania sheets prepared by tape casting. It was found that solid concentration and binder content in the titania slurry play a vital role in the porosity and microstructure of the sintered titania sheets. Solid concentration and binder content were optimized based on the green tape quality and open porosity of the sintered titania sheets. The optimum solid concentration with the lowest surface roughness was obtained at 0.61 g/cm3. The effects of temperature and sintering time on the open porosity and crystal structure of the final product were also investigated. Increasing the sintering temperature from 1000 to 1100 °C resulted in increasing the pore size from 170 to 264 nm and decreasing the open porosity. Finally, water permeability of the porous titania sheets was studied to evaluate the permeation flux and maximum operating pressure. The results revealed that the permeability of the porous titania sheet is increased not only by increasing the open porosity but also by increasing the pore size.  相似文献   

15.
《Ceramics International》2023,49(19):31559-31568
Oil-based drilling cutting pyrolysis residues (ODPRs) are one of the solid wastes from pyrolysis of the oil-based drilling cuttings (OBDCs) that need to be recycled as raw materials to avoid the possible pollution. In this study, a facile low-cost ceramic membrane for oil-in-water emulsions separation was prepared with ODPRs incorporating with fly ash as raw material. CaCO3 in ODPRs would decompose acting as pore-forming agent, and anorthite was formed in resultant membranes. The obtained membrane with 30 wt% ODPRs and 70 wt% fly ash fired at 1050 °C possessed apparent porosity of 38.2%, mean pore size of 0.4 μm, flexural strength of 13.1 MPa, and Darcy permeability of 1.06 × 10−13 m2. Consequently, commendable filtration performance for oil-in-water emulsions was presented. In addition, the ceramic membrane showed favorable recyclability and corrosion resistance. Leaching test indicated that the membrane is safe for oil-in-water emulsion separation. Hereby, this paper confirmed the availability of ODPRs for preparing ceramic filtration membranes, and provided a new environmental conservation way to treat oil-in-water emulsions that was consistent with the sustainable development goals.  相似文献   

16.
《Ceramics International》2022,48(16):23415-23427
Self-glazed ceramic foams were successfully synthesized via powder sintering method, using extracted titanium slag (ETS) and gold tailings (GT) as raw materials without adding any sintering aids and foaming agents. Influence of ETS addition and sintering temperature on crystal phase evolution, physical–mechanical properties, and micro-morphology of ceramic foams was systematically studied. Results indicated that products sintered at 1180 °C with 30 wt% ETS and 70 wt% GT showed the best performance, i.e., bulk density of 1.66 g cm?3, flexural strength of 20.4 MPa, water absorption of 0.14%, open porosity of 0.23%, and glaze Vickers hardness of 6.5 GPa. Moreover, it was observed that there existed strong correlation between bulk density and bending strength. Self-glazed ceramic foams developed in this study are expected to be used as building envelope materials and provide new ideas for effective reuse of other similar solid wastes.  相似文献   

17.
The CaZrO3 ceramic core materials with excellent mechanical and chemical properties were successfully prepared using single-phase CaZrO3 powders. Effects of particle size ratio and sintering temperature on the mechanical and chemical properties of CaZrO3 ceramic core materials were researched. The chemical property was analyzed by leaching research of core materials in 10 wt% and 20 wt% HNO3 solution at the boiling point. Results showed that the suitable particle size ratio was important for the preparation of CaZrO3 ceramic core materials with excellent comprehensive properties. The addition of fine particles in ceramic core materials promoted the densification process owing to the framework formed by coarser particles and sintering neck formed by fine particles between coarse particles, which was beneficial for further improving their bending strength. When the content of particles with 200 mesh size was 80wt%, the highest bending strength was obtained, 54.38 ± 5.28 MPa. The porosity was 17.45% and the volume density was 3.86 g/cm3. The increasing sintering temperature increased the densification of CaZrO3 ceramic core materials by offering the sintering driving force, further leading to the improvement of bending strength. When the temperature was 1650℃, at the 20% content of particles with 200 mesh size, the highest bending strength of CaZrO3 cores reached 51.01 ± 5.18 MPa. Meanwhile, the porosity was 18.65% and the volume density was 3.83 g/cm3. Additionally, the CaZrO3 samples could be effectively leached in 10 wt% HNO3 solution. Therefore, CaZrO3 materials with good mechanical and leaching properties were believed to be a suitable candidate for ceramic core materials in the investment casting of alloys with high melting point.  相似文献   

18.
The manufacturing and optimization of centrifugally casted ceramic membrane supports is presented. For the optimization, the effect of three different powder sizes (0.25, 0.31 and 0.61 μm) and a sintering temperature range between 1050 and 1400 °C was investigated. The ceramic tubes were characterized according to tube dimensions, mercury porosimetry, water permeability, SEM and mechanical strength. It was shown that the centrifugal casting technique delivers highly reproducible support properties. A novel strength testing apparatus was developed to determine the mechanical strength of the ceramic tubes. It was found that the strength varied between 3300 MPa and 300 MPa, depending on the porosity of the supports. With increased sintering temperature, water permeability and porosity decreased, while strength and linear shrinkage increased. The pore diameter of the supports produced by the 0.31 and 0.61 μm powders decreased, while that of the 0.25 μm powders remained constant (72 nm) with increasing sintering temperature. The 0.61 μm powder sintered at the lowest sintering temperature resulted in the support with the highest porosity, pore diameter and porosity, but the lowest mechanical strength and linear shrinkage. An overall improvement concerning pure water permeability was seen when the support in this study was compared to our own previous studies and similar studies in literature.  相似文献   

19.
《Ceramics International》2020,46(3):2910-2914
Porous silicon-bonded silicon carbide (SBSC) ceramics were prepared under argon atmosphere, with silicon as pore former and bonding material, simultaneously, sodium dodecyl benzene sulfonate (SDBS) and ZrO2 as sintering additives, the effects of SDBS and ZrO2 on the porosity, pore size, mechanical, physical and thermal properties and microstructures were investigated. The results suggested that suitable content of SDBS and ZrO2 could not only effectively lower the sintering temperature to 1450 °C due to the sticky flow of molten silicon, but also increase the pore structure and improve the bending strength. The reason for this is that SDBS decomposed into Na2O which reacted with ZrO2 and impurity SiO2, which was the native oxide film on the surface of SiC particles, to form a bonding phase between SiC particles to improve the bending strength; meanwhile, the disappearances of impurity SiO2 would benefit the bond of molten silicon and silicon carbide particles, and silicon melt leaving pores in its original position to increase the pore structure. The optimal apparent porosity, bending strength, average pore size, gas permeance and residual bending strength after thermal shock cycles of SBSC porous ceramic sintered at 1450 °C with 5 wt% SDBS and 6 wt% ZrO2 were 38.33%, 55.4 MPa, 11.3 μm, 106.4 m3/m2·h·kPa and 28.2 MPa, respectively.  相似文献   

20.
《Ceramics International》2016,42(15):16571-16578
The results of development of multi-layer ceramic membranes on the basis of natural quartz raw material from Mongolia are presented. The influence of the phase composition and temperature of calcination on the porosity, morphology and mechanical strength of large-porous ceramic support obtained by the method of isostatic pressing was studied. It was established that multi-layer ceramic membranes obtained by the application of water suspension of high-disperse quartz sand of Mongolia and alumosilicate binder with the addition of 15–35 wt% of quartz are characterized by optimal properties. The developed tubular ceramic membranes with the average pore size 5.3 µm, coefficient of air permeability (4.17–4.41)×10−13 m2, productivity by water 46.3–48.0 m3/(h×m2×bar) and mechanical strength 2.27–2.53 MPa are perspective for wide use in microfiltration processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号