共查询到20条相似文献,搜索用时 87 毫秒
1.
融合FDA-PCMC样本分类的KPCA故障检测新算法 总被引:1,自引:0,他引:1
针对处理实际工业过程中提取的建模样本不纯而导致故障检测失效的问题,提出一种新的融合Fisher判别分析-可能性C-均值聚类(FDA-PCMC)的核主元分析(KPCA)故障检测算法.通过FDA特征提取、初分类和PCMC聚类相结合的方代来实现建模样本的有效分类和提纯,然后使用KPCA进行实时故障检测.对Tennessee Eastman(TE)过程的仿真研宄结果表明了该算法的可行性和有效性. 相似文献
2.
基于特征样本的KPCA在故障诊断中的应用 总被引:8,自引:0,他引:8
核函数主元分析(KPCA)可用于非线性过程监控.建立KPCA模型首先要计算核矩阵K,K的维数等于训练样本的数量,对于大样本集,计算K很困难.对此提出一种基于特征样本的KPCA(SKPCA),其基本思想是,首先利用非线性映射函数将输入空间映射到特征子空间,然后在特征子空间中计算主元.将SKPCA应用于监控Tennessee Eastman过程,并与基于全体样本的KPCA作比较,仿真结果显示,二者诊断结果基本相同,然而特征样本只是训练样本中的一小部分,因此减少了K的维数,解决了K的计算问题. 相似文献
3.
针对间歇过程的多工况和非线性特征,提出一种基于近邻特征标准化(Nearst Neighborhood Feature Standardization,NNFS)样本的核特征量(Kernel Feature Statistics,KFS)故障检测方法。首先,将间歇过程数据按批次方向展开构成二维建模样本,计算每个样本的局部近邻,采用近邻特征实现标准化,提取多工况批次之间的正常偏差,克服Z-score标准化将多工况过程数据看作一个整体而造成的不准确问题。其次,通过核方法将经过标准化后的样本映射到高维空间,在核空间建立监视模型,计算特征量,并提出采用方差分析(variance,VAR)方法确定核参数,通过核密度估计法确定统计控制限。最后,在青霉素发酵过程进行仿真研究,通过比较表明了所提方法的有效性。 相似文献
4.
5.
6.
7.
8.
主元个数是PCA模型的关键参数,其选取直接决定PCA的故障诊断性能;针对传统主元个数选取方法主观性较大,且不考虑故障诊断要求的缺点,提出一种改进的主元个数确定方法;该方法将传统的累积方差贡献率与故障检测率相结合,首先利用累积方差贡献率初步确定主元个数,然后确定满足故障检测率要求的主元个数,将两个主元个数进行比较,从而获得最佳主元个数;与单纯累积方差贡献率方法相比,提高了主元模型的精度,减少了以往方法中人为因素的影响;通过对卫星控制系统的故障检测,证实了该方法可大大提高故障检测准确率。 相似文献
9.
本文将动态主元分析(Dynamic Principal Component Analysis, DPCA)和稀疏主元分析(Sparse Principal Component Analysis, SPCA)两种方法结合起来,提出一种新的稀疏动态主元分析方法,并将其用于工业过程的故障检测。所提出的稀疏动态主元分析方法通过对过程数据的动态增广矩阵进行稀疏主元的求解,获取稀疏的负荷向量,该方法既考虑到了过程数据的动态特性,又降低了过程数据的冗余度,同时降低了计算负荷,非常适合工业过程的实时故障检测。此外,本文还提出了一种前向选择算法,用于确定稀疏主元中的非零负荷数目。最后,将所提出方法应用于数值例子和田纳西-伊斯曼过程,并将与主元分析、动态主元分析和稀疏主元分析等三种方法相比较,表明所提方法可以获得更好的故障检测效果。 相似文献
10.
基于PCA的滚动轴承故障检测方法 总被引:4,自引:1,他引:4
针对滚动轴承故障检测数据处理的问题,由于机械轴承损坏引起机器的故障,为保障安全,要进行检测.现提出了一种主元分析PCA与统计相结合的方法.首先介绍了基于PCA的滚动轴承故障检测方法的相关理论知识,利用PCA算法将滚动轴承振动信号数据建立模型,并将降维后获得的数据用统计方法即T2和SPE进行处理,从而检测出轴承故障.为了研究上述方法对不同情况下滚动轴承的故障检测效果,选取不同直径、不同采样频率、不同转速、不同负载四种情况下的故障进行实验.实验结果表明,方法能较好地分辨出轴承的正常和故障状态,可以较好地解决滚动轴承故障检测数据处理的问题. 相似文献
11.
12.
13.
14.
高压活塞隔膜泵是管道输送的最重要动力源,为了解决其内部单向阀故障的在线监测问题,提出一种基于声发射信号的小波包时频及核主元分析(KPCA)的检测方法。首先采用小波包对声发射数据进行处理,求出信号各频率段的能量值;然后采用KPCA方法对能量值在高维空间进行分解建立特征模型,利用特征模型中的SPE和T2统计量对故障信号进行检测;最后对GEHO型隔膜泵单向阀的声发射数据进行实验验证。通过与主元分析方法的比对,表明所提方法能够快速、准确地对单向阀故障进行在线检测,在高压活塞隔膜泵无损故障检测领域具有良好的应用前景。 相似文献
15.
16.
17.
18.
19.
核主元分析及其在人脸识别中的应用 总被引:10,自引:0,他引:10
传统的基于数据二阶统计矩的特征脸法(Eigenface)或主元分析法(PCA)是一种有效的数据特征提取方法,是基于原始特征的一种线性变换。但是,当原始数据中存在非线性属性时,用主元分析法后留下的显著成分就可能不再反映这种非线性属性。而核主元分析则是基于原始数据的高阶统计量,是一种非线性变换,在图像识别中它可以描述多个像素之间的相关性。该文采用KPCA法提取人脸特征,利用线性支持向量机设计分类器,实验结果表明,基于核主元分析方法的识别正确率明显优于基于主元分析法。 相似文献
20.
跨项目软件缺陷预测可以解决预测项目中训练数据较少的问题,然而源项目和目标项目通常会有较大的数据分布差异,这降低了预测性能。针对该问题,提出了一种基于特征选择和TrAdaBoost的跨项目缺陷预测方法(CPDP-FSTr)。首先,在特征选择阶段,采用核主成分分析法(KPCA)删除源项目中的冗余数据;然后,根据源项目和目标项目的属性特征分布,按距离选出与目标项目分布最接近的候选源项目数据;最后,在实例迁移阶段,通过采用评估因子改进的TrAdaBoost方法,在源项目中找出与目标项目中少量有标签实例分布相近的实例,并建立缺陷预测模型。以F1作为评价指标,与基于特征聚类和TrAdaBoost的跨项目软件缺陷预测(FeCTrA)方法以及基于多核集成学习的跨项目软件缺陷预测(CMKEL)方法相比,CPDP-FSTr的预测性能在AEEEM数据集上分别提高了5.84%、105.42%,在NASA数据集上分别提高了5.25%、85.97%,且其两过程特征选择优于单一特征选择过程。实验结果表明,当源项目特征选择比例和目标项目有类标实例比例分别为60%、20%时,所提CPDP-FSTr能取得较好的预测性能。 相似文献