首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
采用Fe/C微电解和Fe/C微电解-Fenton氧化联合工艺对垃圾渗滤液进行处理,研究了废水初始pH、药剂投加量、药剂投加比例和反应时间等对处理效果的影响,获得Fe/C微电解处理垃圾渗滤液的最佳工艺条件:初始pH=3、m(Fe)/m(C)为4、ρ(Fe/C)为0.6 g/L、反应时间为60 min,处理后COD降至5 960 mg/L,COD去除率达51.8%。Fe/C微电解-Fenton氧化处理垃圾渗滤液的最佳工艺条件:在Fe/C微电解最佳条件下,H2 O2投加量为11 mL/L,反应时间为100 min,出水COD为4 480 mg/L,COD总去除率为63.8%。垃圾渗滤液中的腐殖酸类有机质经过Fe/C微电解或微电解-Fenton氧化处理后变成小分子产物,与Fe/C微电解相比,Fenton氧化对腐殖酸等大分子有机质有更强的氧化降解效果。  相似文献   

2.
采用酸析+铁炭微电解-Fenton氧化预处理印染开纤废水,研究了工艺条件对COD去除率的影响。结果表明,酸析的最佳运行条件:pH=3;铁炭微电解的最佳运行条件为:进水pH=2,反应时间2小时;Fenton氧化进水pH=3,反应时间为60 min,30%浓度H_2O_2最佳投加量2.5 m L/L。在此运行条件下,COD总去除率可以达到94.5%,废水的B/C比由原来的0.02提升至0.25。采用该工艺预处理开纤废水,有效降低了后续生化处理的负荷,提高了废水的可生化性。  相似文献   

3.
采用气浮-混凝-Fenton氧化组合工艺对垃圾渗滤液进行处理。试验研究结果表明,最佳气浮条件:气水比为45~60mL/L、氧化石蜡皂用量为300mg/L、气浮时间为15min;最佳混凝条件:PAM投加量为9mg/L、PAC投加量为1100mg/L、pH值为5、搅拌强度为200r/min;最佳Fenton氧化条件:pH值为3,Fe2+投加量为0.04mol/L,n(H2O2)/n(Fe2+)为15,反应时间为90min。垃圾渗滤液经过气浮-混凝-Fenton氧化处理后COD、NH3-N得到了较好的去除,最终出水COD、NH3-N、TP可达《生活垃圾填埋场污染控制标准》(GB16889—2008)中的排放浓度限值。  相似文献   

4.
采用电-Fenton法处理醋酸纤维素废水厌氧出水,考察了Fe/C颗粒填料、反应时间、反应初始pH值、电流密度等因素对去除效果的影响。试验结果表明:基于电-Fenton法处理醋酸纤维素废水厌氧出水,在添加Fe/C颗粒条件下,有机磷去除率可达87.5%,CODCr去除率达74.3%,出水有机磷、CODCr的质量浓度分别小于8、300 mg/L,满足CJ 343—2010《污水排入城市下水道水质标准》;最佳反应条件为:反应时间为40 min,pH值为3.5,电流密度为4 m A/cm2,在电-Fenton体系中引入Fe/C填料,可将去除效果提高10%~15%。  相似文献   

5.
采用铁炭微电解吸附-Fenton氧化、超声联合工艺处理高浓度有机实验室废水,研究了pH值、H2O2投加量、FeSO4投加量、反应时间等因素对COD去除率的影响。结果表明:铁炭微电解吸附体系在pH=5、Fe∶C体积比为1∶1、时间为3h条件下COD去除率为24%;再经Fenton氧化控制反应时间2h,在FeSO4投加量为6g/L、H2O2投加量为90mL/L、pH=3的处理条件下,废水COD总去除率达48.32%。  相似文献   

6.
李琛 《杭州化工》2012,42(3):13-15,18
青霉素废水是典型的难降解抗生素废水。本研究利用Fenton试剂预处理青霉素废水,探讨了pH值、H2O2用量、Fe2+用量、搅拌时间、静置时间对废水COD去除效果的影响。正交实验结果表明,Fenton试剂氧化法对青霉素废水具有良好的处理效果,在最佳实验条件下(pH=3.5;Fe2SO4·7H2O=0.9g/L;H2O2=1.2mL/L;T=40min),COD去除率为94.2%,各实验因素中Fe2+用量对实验的影响最大。  相似文献   

7.
利用微电解-Fenton组合工艺对油田压裂废水展开预处理研究,以COD去除率为考察指标,单独工艺正交试验结果表明:微电解的最优反应条件为Fe/C摩尔比2∶3、铁碳投加量50 g/L、反应时间60 min、pH值3;Fenton反应的最优条件为p H值3、反应时间90 min、H_2O_2加量12 m L/L、H_2O_2/Fe~(2+)摩尔比30。在最佳条件下,微电解和Fenton反应的COD去除率分别可达56.87%和45.61%,废水COD值由3 715 mg/L降至867.9 mg/L,总去除率达到76.54%。出水水质满足油田现场循环回用的标准。  相似文献   

8.
Fe/Cu催化内电解-Fenton法联合处理三氯乙酸废水的研究   总被引:3,自引:2,他引:1  
采用Fe/Cu内电解-Fenton法联合处理三氯乙酸废水。考察了Fe与Cu质量比、pH值和H2O2投加量等因素对废水处理效果的影响。确定了联合处理法的最佳工艺条件:催化内电解过程中Fe与Cu质量比为4:1、pH值为4、搅拌时间为50min;Fenton法阶段中pH值为4、H2O2加入量为10mL/L并分批投加、搅拌时间为40min。在最佳工况条件下,联合工艺处理质量浓度为100mg/L的三氯乙酸废水脱氯率达80.1%,COD去除率达78.4%。使用联合法处理废水,能有效提高处理效果,可以处理较高浓度的三氯乙酸废水。  相似文献   

9.
以TiO_2/Ti为阳极,活性炭纤维(ACF)为阴极,建立新型光电-Fenton体系,光催化、电-Fenton对比研究了处理COD及色度的去除率;并采用紫外可见光谱及三维荧光光谱探讨了各处理过程中有机物的变化规律。结果表明,在pH=4、紫外灯功率15 W、电流密度10.0 m A/cm2、曝气量1.5 L/min条件下,处理120 min后,新型光电-Fenton对印染废水COD的去除率高达92.05%,高于光催化(15.81%)与电-Fenton(70.38%)之和;脱色率达99.51%。与光催化和电-Fenton对比,新型光电-Fenton不仅能在较短的时间内将大部分大分子降解为小分子或直接矿化,且能将难降解的类腐殖酸及类富里酸物质转化为易降解物质,甚至完全降解。  相似文献   

10.
采用超声强化三维电极/电-Fenton的方法处理印染废水,以孔雀石绿为去除对象。研究了超声与三维电极/电-Fenton联用的的处理效果和影响因素,包括反应时间、p H、电解质浓度、电压、极板间距、曝气强度等。结果表明,单独超声处理孔雀石绿废水时COD去除率并不明显,色度几乎没有变化,但有新的物质产生;超声强化三维电极/电-Fenton对孔雀石绿废水的处理效果很好,比三维电极/电-Fenton对COD和色度去除率分别提高了21%和9.67%,在反应时间为120 min,p H为3、电解质Na2SO4浓度为5 g/L、电压为14 V、极板间距为9 cm、曝气强度为0.8L/min的最佳反应条件下,COD和色度去除率分别达到85.42%和99.85%。通过正交实验得出,影响因素显著性依次为:电解质浓度p H极板间距曝气强度电解电压。  相似文献   

11.
Fenton法预处理2-萘酚生产废水研究   总被引:9,自引:5,他引:4  
用Fenton试剂预处理2-萘酚模拟废水。通过正交试验优化反应过程,当反应时间为40min,初始pH值为3.5,m(H2O2)/m(COD)为2,n(H2O2)/n(Fe2+)为12时,可使COD去除率达到86%。结果表明,反应温度对COD去除的影响并不显著,而H2O2的消耗速率约为COD去除速率的2.3倍。活性污泥抑制试验显示未经Fenton处理的废水EC50值为329mg/L,而预处理后的废水对活性污泥没有抑制,这说明Fenton预处理可有效消除2-萘酚废水的生物毒性。  相似文献   

12.
为研究催化剂对湿式过氧化氢氧化印染废水效果的影响,采用共沉淀法制备了TiO2-CeO2催化剂,并用浸渍法制备了不同铁负载量的Fe/TiO2-CeO2系列催化剂。以过氧化氢湿式催化氧化法处理COD=10 125 mg/L的H-酸模拟印染废水,结果表明:以TiO2-CeO2催化剂处理水样,当催化剂质量浓度为4 g/L,n(Ti)∶n(Ce)=9∶1,水样初始pH=5,反应温度80℃,反应时间2 h,COD去除率达44.3%;以Fe/TiO2-CeO2处理水样,当催化剂质量浓度为4 g/L,n(Ti)∶n(Ce)=9∶1,w(Fe)=2.0%,在水样初始pH=5,反应温度100℃,反应时间1.5 h的条件下,COD去除率可达86.9%。  相似文献   

13.
活性炭负载催化剂臭氧催化氧化处理印染废水研究   总被引:8,自引:2,他引:8  
以堇青石蜂窝陶瓷、硅藻土、活性氧化铝和活性炭作为载体、金属氧化物(FexOy、CuO、NiO、MnxOy、BaO)作为催化活性组分,对臭氧催化氧化印染废水进行了试验对比,并对影响载铁型活性炭催化剂臭氧催化氧化印染废水的因素进行了研究。结果表明,载铁型的催化剂活性相对较高,当焙烧温度为750℃时,催化性能最好。利用载铁型活性炭催化剂,在臭氧质量浓度为10mg/L、pH值为6、反应时间为60min的条件下,催化氧化具有最佳的效果,COD去除率达86%;催化剂的重复利用性好,连续使用12次,COD的去除率仍可达64%。  相似文献   

14.
水解酸化-好氧MBBR耦合Fenton法处理抗生素废水研究   总被引:4,自引:0,他引:4  
采用水解酸化—好氧移动床生物膜(MBBR)串联Fenton工艺处理抗生素废水,探讨了pH、HRT等对水解酸化以及Fe2 浓度和H2O2投加量对Fenton工艺的影响。实验结果表明,对于COD为6800.62mg/L、B/C<0.3的抗生素废水,当水解段pH和HRT分别为6.5和12h时,挥发酸(VFA)质量浓度为931.75mg/L,COD去除率为26.59%,此时水解酸化—好氧段出水COD为1229.80mg/L,COD总去除率为81.92%。再经Fenton工艺深度处理,当Fe2 最佳投加质量浓度为240mg/L,H2O2投加量为3.19mL/L时,总COD去除率可达97.38%,最终出水COD为178.50mg/L,达到制药工业废水排放标准。  相似文献   

15.
纳米TiO2光催化降解直接冻黄染料的研究   总被引:6,自引:0,他引:6  
以纳米TiO2作为光催化剂,紫外灯为光源,对印染废水中的直接冻黄G染料进行了光催化降解实验.讨论了COD的初始浓度、光照时间、纳米TiO2投加量、初始pH值和外加催化剂Fe3+的用量等五个因素对COD和色度去除率的影响.正交实验结果表明:初始pH值和光照时间是影响光催化氧化反应的关键因素;在初始COD为144.67mg/L、Fe3+投加量为6.72mg/L、纳米TiO2投加量为100mg/mL、pH6的条件下,经6h的照射,COD的去除率达到80%,色度的去除率达到98.5%.  相似文献   

16.
改进型微电解法处理炼焦废水的研究   总被引:1,自引:0,他引:1  
姜迎春 《化工时刊》2014,(11):5-10,55
本实验研究了Fe-Cu微电解法预处理炼焦废水的运行效果,并探讨了Fe-Cu双金属微电解法的反应机理。结果表明最佳运行条件为:HRT为45 min,p H值为4,铁铜质量比为5,曝气量为100 m L/min。此条件下COD的去除率达到35%-40%,酚的去除率达到37-40%。污染物降解动力学过程符合一级反应。共存离子对微电解影响的研究结果表明NO3^-,SO4^2-,NH4^+离子对铁铜有一定的钝化,导致处理效果降低,而有还原性的S^2-,NO2^-等离子加入则会增加COD。Fe-Cu微电解法预处理炼焦废水是有效的方法。  相似文献   

17.
采用Fenton氧化对焦化废水进行了深度处理。结果表明:Fenton氧化反应迅速,可迅速降低焦化废水生化出水的COD;H2O2和Fe2+的投加量对Fenton氧化具有明显的影响;pH=3时反应体系具有最佳的COD去除效果。在H2O2投加量为1.994 mL/L,FeSO4.7H2O投加量为0.543 g/L,pH=3,温度为35℃的条件下,反应出水COD低于100 mg/L,去除率可达72.7%;Fenton氧化可有效去除生化出水中的难降解有机物。实验结果表明Fenton氧化是深度处理焦化废水的有效工艺。  相似文献   

18.
固体废弃物预处理中药制药废水的实验研究   总被引:1,自引:0,他引:1  
采用固体废弃物(铁屑和炉渣)预处理中药制药废水,并以COD去除率和脱色率为指标考察其处理效果。考察了废水pH值、试剂投加量、反应时间等对COD去除率及脱色率的影响,确定了最适工艺条件。结果表明,在弱酸性条件下内电解处理效果较好;加入适量的H2O2可明显提高对COD和色度的去除效果;内电解处理后投加适量的石灰乳对废水的COD去除和脱色均有利。废水预处理的最适工艺条件为:常温下,废水的pH为5.0~6.5,铁屑加入量为60 g/L,炉渣加入量为100 g/L,H2O2加入量为20 mL/L,反应30 min后,加入石灰乳(16 mL/L)调节pH至9。在此条件下,废水COD去除率及脱色率可分别达到73%和96%以上,而且处理成本较低。  相似文献   

19.
曹鹏华  宗刚  高盼盼  刘彩霞  陈朋 《广州化工》2012,40(22):130-132
垃圾渗滤液是一种较难处理的废水,本文采用混凝法、Fenton氧化法对垃圾渗滤液进行预处理研究,通过单因素试验结果分析可知:当10%PFS投药量为1.2 g/L,搅拌转速为350 r/min,pH值为7,沉淀时间为120 min时,COD的去除率达到最佳,最高可以达到47.1%,色度去除率达到52.7%。采用芬顿法时当pH值为3,H2O2投加量为6 mL/L,反应时间为90 min,n(H2O2)/n(Fe2+)为8∶1,COD的去除率达到最佳,COD和色度去除率分别可达45.6%和93.8%。综合比较在预处理中运用混凝法无论在工艺还是经济方面都是比较可行的。  相似文献   

20.
苯酚废水的电催化氧化-生物降解工艺研究   总被引:1,自引:0,他引:1  
采用电催化氧化-生物降解工艺处理苯酚废水,运用循环伏安法研究了苯酚在铂电极上的电催化氧化,考察了pH值、温度、接种量对微生物降解性能的影响.结果表明,初始苯酚浓度为200 mg·L-1的废水在pH值为10、NaCl浓度为10 g·L-1、电流密度为50 mA·cm-2的条件下电催化氧化120 min,苯酚完全去除,CO...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号