首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The theory behind and operation of an electroosmotically induced hydraulic pump for microfluidic devices is reported. This microchip functional element consists of a tee intersection with one inlet channel and two outlet channels. The inlet channel is maintained at high voltage while one outlet channel is kept at ground and the other channel has no electric potential applied. A pressure-induced flow of buffer is created in both outlet channels of the tee by reducing electroosmosis in the ground channel relative to that of the inlet channel. Spatially selective reduction of electroosmosis is accomplished by coating the walls of the ground channel with a viscous polymer. The pump is shown to differentially transport ions down the two outlet channels. This ion discrimination ability of the pump is examined as a function of an analyte's electrophoretic velocity. In addition, we demonstrate that an anion can be rejected from the ground channel and made to flow only into the field-free channel if the electrophoretic velocity of the anion is greater than the pressure-generated flow in the ground channel. The velocity threshold at which anion rejection occurs can be selectively tuned by changing the flow resistance in the field-free channel relative to the ground channel.  相似文献   

2.
In order to ensure a stable and efficient separation in microfluidic free-flow electrophoresis (FFE) devices, various methods and chips have been presented until now. A major concern hereby is the generation of gas bubbles caused by electrolysis and the resulting disturbances in the position of the separated analyte lanes. Instable lane positions would lead to a decreased resolution in sample collection over time which certainly would be problematic when incorporating a stationary detector system. In contrast to our previous publications, in which we implemented laborious semipermeable membranes to keep bubbles outside the separation region, here we describe an electrochemical approach to suppress the electrolysis of water molecules and therefore bubble formation. This approach allowed a simpler and additionally a closed chip device with integrated platinum electrodes. With the use of this chip, the successful separation of three fluorescent compounds was demonstrated. Quinhydrone, which is a complex of hydroquinone and p-benzoquinone, was added only to the local flow streams along the electrodes, preventing mixing with the separation media and sample. The electrical current was generated via the oxidization and reduction of hydroquinone and p-benzoquinone up to a certain limit of the electrical current without gas formation. The separation stability was investigated for the chip with and without quinhydrone, and the results clearly indicated the improvement. In contrast to the device operating without quinhydrone, a 2.5-fold increase in resolution was achieved. Furthermore, separation was demonstrated within tens of milliseconds. This chemical approach with its high miniaturization possibilities offers an interesting alternative, in particular for low-current miniaturized FFE systems, in which large and open electrode reservoirs are not tolerable.  相似文献   

3.
Microfabricated devices integrating sample filtration, solid-phase extraction, and chromatographic separation with solvent programming were demonstrated. Filtering of the sample was accomplished at the sample inlet with an array of seven channels each 1 microm deep and 18 microm wide. Sample concentration and separation were performed on channels 5 microm deep and 25 microm wide coated with a C18 phase, and elution was achieved under isocratic, step, or linear gradient conditions. For the solid-phase extraction, signal enhancement factors of 400 over a standard injection of 1.0 s were observed for a 320-s injection. Four polycyclic aromatic compounds were resolved by open channel electrochromatography in under 50 s. Chip operation was unaffected by the presence of the 5-microm silica particles at the filter entrance.  相似文献   

4.
Rapid, robust, and economical fabrication of fluidic microchannels is of fundamental importance for the successful development of disposable lab-on-a-chip devices. In this work, we present a solvent-actuated bonding method for fabricating polymeric microfluidic devices at room temperature. A PMMA sheet with an imprinted microchannel was clamped to a blank PMMA sheet, and then 80 +/- 5 muL of acetone (bonding solvent) was introduced at one end of the fluidic channel and aspirated out at the other end. As the solvent moved down the channel, capillary forces drew a fraction of the solvent into the interstitial space between the two polymeric substrates. After aspiration, the assembly was incubated in the clamp for 5 min for effective bond formation. The quantity of the bonding solvent, its water content and flow rate, along with residence time in the channel were found to have significant impact on the bond quality and the channel integrity. Microfluidic electrophoretic separations of a 400-base DNA ladder were performed in devices fabricated using this method in less than 8 min with efficiencies routinely between 2 x 10(6) and 3 x 10(6) plates/m. The simplicity and economy of this technique make it amenable for automation and mass production, which could make polymeric substrates more attractive for single-use chemical analysis devices.  相似文献   

5.
Control of the polymer surface chemistry is a crucial aspect of development of plastic microfluidic devices. When commercially available plastic substrates are used to fabricate microchannels, differences in the EOF mobility from plastic to plastic can be very high. Therefore, we have used polyelectrolyte multilayers (PEMs) to alter the surface of microchannels fabricated in plastics. Optimal modification of the microchannel surfaces was obtained by coating the channels with alternating layers of poly(allylamine hydrochloride) and poly(styrene sulfonate). Polystyrene (PS) and poly(ethylene terephthalate) glycol (PETG) were chosen as substrate materials because of the significant differences in the polymer chemistries and in the EOF of channels fabricated in these two plastic materials. The efficacy of the surface modification has been evaluated using XPS and by measuring the EOF mobility. When microchannels prepared in both PS and PETG are modified with PEMs, they demonstrate very similar electroosmotic mobilities. The PEMs are easily fabricated and provide a means for controlling the flow direction and the electroosmotic mobility in the channels. The PEM-coated microchannels have excellent wettability, allowing facile filling of the channels. In addition, the PEMs produce reproducible results and are robust enough to withstand long-term storage.  相似文献   

6.
7.
We report rapid and efficient electrophoretic separations of N-glycans on microfluidic devices. Using a separation length of 22 cm and an electric field strength of 750 V/cm, analysis times were less than 3 min, and separation efficiencies were between 400,000 and 655,000 plates for the N-glycans and up to 960,000 plates for other sample components. These high efficiencies were necessary to separate N-glycan positional isomers derived from ribonuclease B and linkage isomers from asialofetuin. Structural isomers of N-glycans derived from a blood serum sample of a cancer patient were also analyzed to demonstrate that clinically relevant, complex samples could be separated on-chip with efficiencies similar to those derived from model glycoproteins. In addition, we compared microchip and capillary electrophoresis under similar separation conditions, and the microchips performed as well as the capillaries. These results confirmed that the noncircular cross section of the microchannel did not hamper separation performance. For all experiments, the glycan samples were derivatized with 8-aminopyrene-1,3,6-trisulfonic acid to impart needed charge for electrophoresis and a fluorescent label for detection.  相似文献   

8.
Fu LM  Yang RJ  Lee GB 《Analytical chemistry》2003,75(8):1905-1910
This paper presents an experimental and numerical investigation into electrokinetic focusing injection on microfluidic chips. The valving characteristics on microfluidic devices are controlled through appropriate manipulations of the electric potential strengths during the sample loading and dispensing steps. The present study also addresses the design and testing of various injection systems used to deliver a sample plug. A novel double-cross injection microfluidic chip is fabricated, which employs electrokinetic focusing to deliver sample plugs of variable volume. The proposed design combines several functions of traditional sample plug injection systems on a single microfluidic chip. The injection technique uses an unique sequence of loading steps with different electric potential distributions and magnitudes within the various channels to effectuate a virtual valve.  相似文献   

9.
10.
Sperm chemotaxis is an area of significant interest to scientists involved in reproductive science. Understanding how and when sperm cells are attracted to the egg could have profound effects on reproduction and contraception. In an effort to systematically study this problem, we have fabricated and evaluated a microfluidic device to measure sperm chemotaxis. The device was designed with a flow-through configuration using a spatially and temporally stable chemical gradient. Mouse sperm cells were introduced into the chemotaxis chamber between confluent flows of mouse ovary extract and buffer. The sperm experiencing chemotaxis swam toward the extract and were counted relative to those that swam toward the buffer. The ovary extracts were diluted from 10(2) to 10(7) times, and each extract dilution was screened for chemotaxis. Four out of six ovaries showed a strong chemotactic response at extract dilutions of 10(-3) to 10(-5). This device provided a convenient, disposable platform on which to conduct chemotaxis assays, and the flow-through design overcomes difficulties associated with distinguishing chemotaxis from trapping.  相似文献   

11.
We present a novel approach to perform high-sensitivity NMR imaging and spectroscopic analysis on microfluidic devices. The application of NMR, the most information-rich spectroscopic technique, to microfluidic devices remains a challenge because the inherently low sensitivity of NMR is aggravated by small fluid volumes leading to low NMR signal and geometric constraints resulting in poor efficiency for inductive detection. We address the latter by physically separating signal detection from encoding of information with remote detection. Thereby, we use a commercial imaging probe with sufficiently large diameter to encompass the entire device, enabling encoding of NMR information at any location on the chip. Because large-diameter coils are too insensitive for detection, we store the encoded information as longitudinal magnetization and flow it into the outlet capillary. There, we detect the signal with optimal sensitivity, using a solenoidal microcoil, and reconstruct the information encoded in the fluid. We present a generally applicable design for a detection-only microcoil probe that can be inserted into the bore of a commercial imaging probe. Using hyperpolarized 129Xe gas, we show that this probe enables sensitive reconstruction of NMR spectroscopic information encoded by the large imaging probe while keeping the flexibility of a large coil.  相似文献   

12.
A microfluidic chip with an integrated planar waveguide was fabricated in poly(methyl methacrylate), PMMA, using a single-step, double-sided hot-embossing approach. The waveguide was embedded in air on three sides, the solution being interrogated on the fourth. DNA probes were covalently attached to the waveguide surface by plasma activating the PMMA and the use of carbodiimide coupling chemistry. Successful hybridization events were read using evanescent excitation monitored by an imaging microscope, which offered high spatial resolution (2 microm) and a large field-of-view (20 mm diameter field-of-view), providing imaging of the entire array without scanning. The application of the microfluidic/waveguide assembly was demonstrated by detecting low abundant point mutations; insertion C mutations in BRCA1 genes associated with breast cancer were analyzed using a universal array coupled to an allele-specific ligation assay. DNA probes consisting of amine-terminated oligonucleotides were printed inside the microfluidic channel using a noncontact microspotter. Mutant and wild-type genomic DNAs of BRCA1 were PCR (polymerase chain reaction) amplified, with the amplicons subjected to ligation detection reactions (LDRs). LDR solutions were allowed to flow over the microarray positioned on the polymer waveguide with successful ligation events discerned through fluorescence signatures present at certain locations of the array. The microfluidic/waveguide assembly could detect polymorphisms present at <1% of the total DNA content.  相似文献   

13.
Electroosmotic flow (EOF) is commonly utilized in microfluidics. Because the direction of the EOF can be determined by the substrate surface charge, control of the surface chemical state offers the potential, in addition to voltage control, to direct the flow in microfluidic devices. We report the use of polyelectrolyte multilayers (PEMs) to alter the surface charge and control the direction of flow in polystyrene and acrylic microfluidic devices. Relatively complex flow patterns with simple arrangements of applied voltages are realized by derivatization of different arms of a single device with oppositely charged polyelectrolytes. In addition, flow in opposite directions in the same channel is possible. A positively derivatized plastic substrate with a negatively charged lid was used to achieve top-bottom opposite flows. Derivatization of the two sides of a plastic microchannel with oppositely charged polyelectrolytes was used to achieve side-by-side opposite flows. The flow is characterized using fluorescence imaging and particle velocimetry.  相似文献   

14.
Flow cytometry of the bacterium Escherichia coli was demonstrated on a microfabricated fluidic device (microchip). The channels were coated with poly(dimethylacrylamide) to prevent cell adhesion, and the cells were transported electrophoretically by applying potentials to the fluid reservoirs. The cells were electrophoretically focused at the channel cross and detected by coincident light scattering and fluorescence. The E. coli were labeled with a membrane-permeable nucleic acid stain (Syto15), a membrane-impermeable nucleic acid stain (propidium iodide), or a fluorescein-labeled antibody and counted at rates from 30 to 85 Hz. The observed labeling efficiencies for the dyes and antibody were greater than 94%.  相似文献   

15.
Static and dynamic acute cytotoxicity assays on microfluidic devices   总被引:1,自引:0,他引:1  
Static and dynamic acute toxicity assays of cells were performed on microfluidic devices where materials were hydraulically transported. Static assays were performed by incubating cells with an agent in a microchip reservoir and optically interrogating the cells after hydrodynamic focusing at a cross intersection. Dynamic assays were performed on a microchip with a 25-cm-long spiral channel where the cells were mixed with an agent and optically monitored 0.1, 12, and 22 cm from the point of mixing. The incubation time was determined by the time needed for cells to transit from the mixing location to the point of detection. Cell viability was determined using the ratio of fluorescence signals from membrane permeant (calcein) and membrane impermeant (propidium iodide) stains. The model system used in this study was the viability of Jurkat cells in the presence of the agent Triton X-100). An average LC50 value of 138 microM for Triton X-100 was obtained for an incubation period of 7-12 min using the static assay. LC50 values obtained with the dynamic assay for 25- and 47-s incubation times were 290 and 250 microM Triton X-100, respectively. Higher LC50 values for the dynamic assay were expected due to the shorter incubation times.  相似文献   

16.
The development of a novel, fully integrated, miniaturized pumping system for generation of pressure-driven flow in microfluidic platforms is described. The micropump, based on electroosmotic pumping principles, has a multiple open-channel configuration consisting of hundreds of parallel, small-diameter microchannels. Specifically, pumps with microchannels of 1-6 microm in depth, 4-50 mm in length, and an overall area of a few square millimeters, were constructed. Flow rates of 10-400 nL/min were generated in electric-field-free regions in a stable, reproducible and controllable manner. In addition, eluent gradients were created by simultaneously using two pumps. Pressures up to 80 psi were produced with the present pump configurations. The pump can be easily interfaced with other operational elements of a micrototal analysis system (micro-TAS) device with multiplexing capabilities. A new microfluidic valving system was also briefly evaluated in conjunction with these pumps. The micropump was utilized to deliver peptide samples for electrospray ionization-mass spectrometric (ESI-MS) detection.  相似文献   

17.
Digital microfluidics is a fluid manipulation technique in which discrete droplets are actuated on patterned arrays of electrodes. Although there is great enthusiasm for the application of this technique to chemical and biological assays, development has been hindered by the requirement of clean room fabrication facilities. Here, we present a new fabrication scheme, relying on microcontact printing (microCP), an inexpensive technique that does not require clean room facilities. In microCP, an elastomeric poly(dimethylsiloxane) stamp is used to deposit patterns of self-assembled monolayers onto a substrate. We report three different microCP-based fabrication techniques: (1) selective etching of gold-on-glass substrates; (2) direct printing of a suspension of palladium colloids; and (3) indirect trapping of gold colloids from suspension. In method 1, etched gold electrodes are used for droplet actuation; in methods 2 and 3, colloid patterns are used to seed electroless deposition of copper. We demonstrate, for the first time, that digital microfluidic devices can be formed by microCP and are capable of the full range of digital microfluidics operations: dispensing, merging, motion, and splitting. Devices formed by the most robust of the new techniques were comparable in performance to devices formed by conventional methods, at a fraction of the fabrication time. These new techniques for digital microfluidics device fabrication have the potential to facilitate expansion of this technology to any research group, even those without access to conventional microfabrication tools and facilities.  相似文献   

18.
构建一种基于环介导等温扩增(loop-mediated isothermal amplification,LAMP),集细菌在线裂解、核酸提取、目标基因扩增和产物检测一体化的用于病原菌快速检测的集成式微流控芯片。以耐甲氧西林金黄色葡萄球菌(methicillin-resistant staphylococcus,MRSA)为模式菌,以mec A为靶基因,在优化条件下用芯片实现对病原菌的在线检测,完成对101~106cfu MRSA的在线裂解、LAMP扩增和产物测定,采用荧光原位检测可得101~105cfu的检测范围和101cfu的检出限。该微流控LAMP芯片结构简单,操作便捷,可在1 h内实现对MRSA mec A基因的快速检测,具有较高的灵敏度和特异性,为下一步临床生物样本病原菌快速检测微流控芯片系统的构建奠定前期研究基础。  相似文献   

19.
Microfluidic devices using carbon nanotube (CNT) materials (single-walled and two multiwalled (MWCNT)) for the analysis of selected analyte groups of significance in foods such as dietary antioxidants, water-soluble vitamins, vanilla flavors, and isoflavones involved in representative food samples have been explored for the first time. Ultrafast separations resulted in well-defined and resolved peaks with enhanced voltammetric current in comparison with those obtained from unmodified screen-printed electrodes, turning MWCNT into an ideal material for electrochemical sensing in food analysis. Resolution was improved by a factor of 2, and sensitivity was dramatically enhanced with amplification factors toward calibration slopes from 4- to 16-fold. In both qualitative and quantitative domains, this impressive performance of CNTs integrated on microfluidics allowed solving specific challenges in food environments such as the direct detection of analytes in complex natural samples and unambiguous analytes in the control of fraud, which was not possible on nonmodified surfaces, avoiding the integration of complex preconcentration steps on these microdevices. The use of these unique materials in microfluidics for food analysis has opened new expectations in "lab-on-a-chip" domains.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号