首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 109 毫秒
1.
《应用化工》2017,(11):2215-2222
归纳总结了化学链技术在制氢方面的研究和应用,目前主要应用方式有三种:化学链重整制氢(CLR)、钙链循环制氢(Ca-CLP)、化学链制氢(CLHG)。为制得高纯氢气CLR和Ca-CLP都需要水汽变换、变压吸附等后续处理过程,而CLHG在实现CO_2捕集的同时不需要额外的氢气净化过程,优势明显。氧载体的选择、制备和反应器结构设计是CLHG的关键。与其它氧载体相比,由于铁基氧载体具有制氢效率高、廉价易得、环境友好度高等特点更适合CLHG过程。而未经修饰的铁基氧载体容易失活,通过添加惰性组分和其它金属元素能增加其可循环性、抗积碳性、反应性。气固两相的热力学特性分析有助于CLHG反应器的设计,气固逆流接触的两段流化床和移动床两类反应器适合CLHG过程。以煤为燃料的CLHG过程将是化学链制氢的重要研究方向。  相似文献   

2.
化学链制氢是一种新型的制氢方式,具有高效、产品纯度高且分离简单、内分离 CO2、低 NOx等特点,具有广阔的发展前景。阐述了化学链制氢的基本技术原理,并从载氧体的筛选与制备、化学链制氢反应器的发展、化学链制氢原料的选择等方面对当前化学链制氢技术的发展现状和存在不足进行了总结分析,指出了化学链制氢发展的 3个重点方向:筛选制备性能优异的载氧体、设计优化反应器、固体燃料化学链制氢及其系统开发。  相似文献   

3.
利用氢能替代常规化石能源是运输行业应对气候变化和环境污染问题的一个重要突破口。将化学链技术应用于制氢过程不仅可以提高能量转换效率、减少环境污染,还可以在制氢的同时捕捉该过程产生的CO2,具有广阔的发展前景。本文概述了化学链制氢的两种方式的原理及特点,总结了不同过程在载氧体的筛选、反应器的形式以及系统模拟方面的研究现状。指出高效载氧体的筛选和制备是各个过程成功运行的关键。化学链水蒸气重整制氢[CLR(s)]过程需要考虑管束的磨损问题,而自热化学链重整制氢[CLR(a)]过程需要注意过程中的反应热量平衡。廉价载氧体的筛选、固体燃料的化学链制氢及其系统开发是化学链制氢(CLH)过程未来研究方向。  相似文献   

4.
高磊  徐玉胜  曹晏 《广州化工》2022,(21):49-51+76
化学链制氢为化石能源的高效清洁利用提供了新思路,是一种新的制氢方式,它具有高效、产品纯度高且分离简单、内分离CO2、低NOx等特点,发展前景广阔。本文阐述了化学链制氢的国内外研究现状,基本原理,煤化学链转化过程,介绍了设计的煤化学链制氢工艺实验装置。指出了化学链制氢发展的重点方向:筛选制备性能优异的载氧体、设计优化反应器、固体燃料化学链制氢及其系统开发。  相似文献   

5.
介绍了化学链燃烧技术(chemical-looping combustion,CLC)的基本概念及其特点;分析了固体燃料CLC的反应机理;总结了固体燃料CLC中氧载体的研究进展;探讨了几种不同的固体燃料CLC的反应器装置,指出串行流化床反应器是将来着重研究的装置;介绍了化学链制氢技术(chemical looping hydrogen,CLH)、化学链重整技术(chemical-looping reforming,CLR)和非耦合氧化学链燃烧技术(chemical-looping with oxygen uncoupling,CLOU)三种CLC技术的拓展,指出了固体燃料CLC中存在的问题及进一步研究的方向.  相似文献   

6.
化学链燃烧方式中氧载体的研究进展   总被引:8,自引:0,他引:8  
化学链燃烧是一种新型的燃烧技术,氧载体的性能对它的发展非常重要。系统总结了以不同的金属氧化物和惰性载体作为原料,通过二者不同的混合比例,不同的制备工艺制备的氧载体的性能,包括化学反应性、载氧能力、物理性能、循环寿命、反应温度范围和抗碳沉积能力等,认为氧载体NiO/NiAl2O4,Fe2O3/Al2O3和CoO—NiO/YSZ综合性能优良,可用于化学链燃烧过程.分析了目前相关研究的薄弱环节,指出了今后有待加强的研究方向.  相似文献   

7.
化学链燃烧(Chemical-Looping Combustion 简称CLC)是一种新型的燃烧方式,具有高效、内分离CO2、低NOx 等特点,本文阐述了CLC的基本技术原理,并从氧载体的筛选与制备、化学链燃烧反应器的发展、化学链燃烧系统分析与数值模拟、化学链燃烧与其他技术的耦合、化学链燃烧技术的拓展等方面对当前化学链技术的发展现状和存在不足进行了总结分析,指出了化学发展的5个重点方向。  相似文献   

8.
化学链重整直接制氢技术进展   总被引:5,自引:1,他引:4       下载免费PDF全文
曾亮  巩金龙 《化工学报》2015,66(8):2854-2862
化学链重整直接制氢技术使用固态金属氧化物作为氧载体代替传统重整过程中所需的水蒸气或纯氧,将燃料直接转化为高纯度的合成气或者二氧化碳和水,被还原的金属氧化物则可以与水蒸气再生并直接产生氢气,实现了氢气的近零能耗原位分离,是一种绿色高效的新型制氢过程。根据产物和供热方式的不同,可以将化学链重整直接制氢工艺分为双床系统和三床系统两类,并对各系统中氧载体与反应器的设计与选择进行了分析。通过Elingham图对不同氧载体的氧化还原能力进行比较,选取适于直接制氢的金属氧化物,并讨论了氧载体材料研发的最新进展。化学链制氢反应器设计应根据不同原料和产品的特点,选择合适的气-固接触方式,以强化化学链重整直接制氢效率。  相似文献   

9.
制氢技术现状及展望   总被引:16,自引:0,他引:16  
矿物燃料制氢是主要的制氢方法,其中以天然气蒸汽转化制氢的成本最低。重油部分氧化和煤气化曾经是制氢的重要方法,由于生产成本较高其发展有所减缓。这三种制氢过程制得合成气后还要经过变换完成进一步制氢,最后脱除CO2得到较纯的氢气,过程复杂。随着燃料电池的商业化进程的日益加快,低成本的、不含或少含CO的制氢技术受到广泛关注,其中铁蒸汽法和甲烷催化裂解法制得的氢气不含CO和CO2,过程得到简化。显然,矿物燃料制氢要向大气排放大量的温室气体,对环境不利。水电解制氢是较理想的制氢方法,不产生温室气体,但生产成本较高。因此水电解制氢适合电力资源如水电、风能、地热能、潮汐能以及核能比较丰富的地区。其他制氢技术如热化学制氢、太阳能制氢、生物质制氢以及等离子体制氢也在开发之中,相信是矿物燃料制氢与水电解制氢的有效补充。  相似文献   

10.
我国能源结构决定了以煤为主的甲醇生产路线。传统煤制甲醇过程主要存在过程能量效率低、CO2捕集能耗高等问题。本文提出了一种化学链空分联合化学链制氢的煤制甲醇新过程,以降低能耗、二氧化碳排放及提高能源效率。化学链空分技术的集成可以替代传统煤制甲醇过程的空气分离单元,并在一定程度上降低能耗。化学链制氢技术的集成,一方面可以替代水煤气变换装置,并且可以极大程度降低二氧化碳捕集能耗;另一方面,化学链制氢技术还可生产用于调整合成气氢与碳比的氢。本文对新过程的核心单元进行了参数优化以及全流程的模拟,基于模拟对新过程的性能进行了分析,结果表明新过程与传统的煤制甲醇过程相比,空分和二氧化碳捕集能耗分别降低了41%和89%。同时,新过程的能量效率提高了18%,二氧化碳排放量降低了45%。  相似文献   

11.
刘一君  陈时熠  胡骏  周威  向文国 《化工学报》2021,72(5):2392-2412
化学链技术是目前能源技术研究的热点之一,其关键技术包括载体材料的制备和反应器的设计。综述了化学链技术的应用前景,总结了化学链反应器设计原理,回顾了目前世界上公开报道的设计完成、在建或已经运行的化学链反应器,归纳讨论了不同反应器设计细节的共同点及目的。开展以微小颗粒、纳米颗粒作为载体材料时,颗粒聚团在宏观反应器尺度下的流动传递规律、循环反应机理和系统运行控制特性的研究;开展反应器内颗粒流动-传递-反应耦合机制研究,建立多尺度统一模型;在全尺寸化学链反应器上进行系统自热实验研究;利用数值模拟方法研究和开发用于固体燃料转化过程的高效炭/灰分离器是未来化学链反应器发展需要关注的几个方面。  相似文献   

12.
氨气不仅是重要的化工原料和良好的氢载体,其可以作为无碳燃料的属性也引起了广泛关注。低能耗高效率的合成氨工艺是实现氨作为燃料应用的关键。阐述了合成氨工艺的发展历程,概述了以Haber-Bosch工艺为基础的多相催化和光、电等外场力驱动的合成氨工艺的新发展,重点介绍了化学链合成氨的最新研究成果,并对其研究方向进行展望。传统Haber-Bosch工艺苛刻的反应条件以及热力学和动力学之间的矛盾,促使科研工作者一直努力探索可持续的环境友好型合成氨技术。随着催化科学和表面科学的进步,人们对合成氨的反应机理和催化剂的物化性质有了更深入的认识,这为开发“绿色”合成氨工艺提供了有价值的参考信息,如要提高过渡金属催化合成氨性能,须尽量规避表面物种吸附能间的线性关系。另外,以可再生能源为能量来源的光、电催化合成氨,借助外场作用可以有效影响反应速率和机理。化学链技术的发展为合成氨工艺提供了新思路,将合成氨过程解耦为吸氮和释氮产氨2个或多个分步反应,可较好地缓解合成氨热力学和动力学矛盾,规避反应物竞争吸附。同时,各分步反应可分别优化,使整个化学链合成氨工艺达到最佳反应效果。未来采用太阳能聚热供能以及以生物质炭为碳源,并对化学链合成氨工艺进行经济性分析反馈指导工艺流程的优化,可降低碳基化学链制氨工艺的成本和能耗。  相似文献   

13.
Fanxing Li  Liang Zeng  Liang-Shih Fan 《Fuel》2010,89(12):3773-3784
Biomass is a clean and renewable energy source. The efficiency for biomass conversion using conventional fuel conversion techniques, however, is constrained by the relatively low energy density and high moisture content of biomass. This study presents the biomass direct chemical looping (BDCL) process, an alternative process, which has the potential to thermochemically convert biomass to hydrogen and/or electricity with high efficiency. Process simulation and analysis are conducted to illustrate the individual reactor performance and the overall mass and energy management scheme of the BDCL process. A multistage model is developed based on ASPEN Plus® to account for the performance of the moving bed reactors considering the reaction equilibriums. The optimum operating conditions for the reactors are also determined. Process simulation utilizing ASPEN Plus® is then performed based on the reactor performance data obtained from the multistage model. The simulation results indicate that the BDCL process is significantly more efficient than conventional biomass conversion processes. Moreover, concentrated CO2, produced from the BDCL process is readily sequesterable, making the process carbon negative. Several BDCL configurations are investigated for process optimization purposes. The fates of contaminants are also examined.  相似文献   

14.
铁基移动床化学链技术进展   总被引:3,自引:3,他引:0       下载免费PDF全文
在日益增长的能源需求与日益严峻的全球气候变化带来的双重压力下,清洁、高效且经济的能源利用方法显得尤为重要。将化学链概念用于传统化石能源的转化是一种前景广阔的新技术。化学链燃烧利用载氧体间接转化含碳燃料,同时实现二氧化碳的捕集。俄亥俄州立大学研发了采用铁基载氧体和移动床反应器的化学链技术,可实现天然气、煤、生物质等多种燃料向电力、氢、液体燃料等产品的零排放转化。目前,合成气化学链(syngas chemical looping,SCL)和煤直接化学链(coal direct chemical looping,CDCL)技术两套25 kWth级小试装置已成功运行总计超过850 h,一套250 kWth级的高压SCL装置即将投入示范运行。  相似文献   

15.
A multiphase CFD-based model with gas-solid hydrodynamics and chemical reactions is used to model flow behavior of gas and particles in the fuel reactor of chemical looping combustion process. The granular kinetic theory model is used to model the interaction of particle collisions. The friction stress of particles is considered to account for strain rate fluctuations and slow relaxation of the assembly to the yield surface. The reaction kinetics model of the fuel reactor is presented. The instantaneous mass fractions of both reactant and products are predicted, and the time averaged distributions are calculated in the fuel reactor. Simulated fuel reactor flows reveal a high weight fraction of unburned methane fuel in the flue gas along with CO2 and H2O. This behavior implies high fuel loss at the exit of the reactor and indicates the necessity to increase the residence time and improve mixing in the fuel reactor using circulating fluidized bed technology.  相似文献   

16.
This paper assesses, from a thermodynamic perspective, the conversion of coal to power and hydrogen through gasification simultaneously with a dual chemical looping processes, namely chemical looping air separation (CLAS) and water–gas shift with calcium looping CO2 absorption (WGS-CaL). CLAS offers an advantage over other mature technologies in that it can significantly reduce its capital cost. WGS-CaL is an efficient method for hydrogen production and CO2 capture. The three major factors, oxygen to coal (O/C), steam to coal (S/C) and CaO to coal (Ca/C) were analyzed. Moreover, the comparisons of this suggested process and the traditional processes including integrated gasification combined cycle (IGCC), integrated gasification combined cycle with carbon capture and storage (IGCC-CCS) and integrated gasification combined cycle with calcium-based chemical looping (IGCC-CaL) were discussed. And, the exergy destruction analysis of this suggested process has also been calculated.  相似文献   

17.
Chemical looping combustion (CLC) is a flameless two-step fuel combustion that produces a pure CO2 stream, ready for compression and sequestration. The process is composed of two interconnected fluidized bed reactors. The air reactor which is a conventional circulating fluidized bed and the fuel reactor which is a bubbling fluidized bed. The basic principle is to avoid the direct contact of air and fuel during the combustion by introducing a highly-reactive metal particle, referred to as oxygen carrier, to transport oxygen from the air to the fuel. In the process, the products from combustion are kept separated from the rest of the flue gases namely nitrogen and excess oxygen. This process eliminates the energy intensive step to separate the CO2 from nitrogen-rich flue gas that reduce the thermal efficiency.Fundamental knowledge of multiphase reactive fluid dynamic behavior of the gas-solid flow is essential for the optimization and operation of a chemical looping combustor.Our recent thorough literature review shows that multiphase CFD-based models have not been adapted to chemical looping combustion processes in the open literature. In this study, we have developed the reaction kinetics model of the fuel reactor and implemented the kinetic model into a multiphase hydrodynamic model, MFIX, developed earlier at the National Energy Technology Laboratory. Simulated fuel reactor flows revealed high weight fraction of unburned methane fuel in the flue gas along with CO2 and H2O. This behavior implies high fuel loss at the exit of the reactor and indicates the necessity to increase the residence time, say by decreasing the fuel flow rate, or to recirculate the unburned methane after condensing and removing CO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号