首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
为了研究淫羊藿苷含量对镁/超声微弧氧化/壳聚糖/淫羊藿苷(Mg/UMAO/CS/IC)涂层性能的影响,并提高纯镁的耐蚀性,采用电泳沉积(EPD)和UMAO技术在纯镁基体上制备Mg/UMAO/CS/IC涂层。采用扫描电子显微镜(SEM)、X射线衍射(XRD)、原子力显微镜(AFM)和傅立叶变换红外光谱(FTIR)对涂层的特征进行分析。对不同样品在模拟体液中进行了电化学阻抗和动电位极化的腐蚀行为研究。结果表明:当IC含量为0.4 g/L时CS/IC层具有较好的封孔效果。添加不同IC含量的Mg/UMAO/CS/IC涂层均由Mg、MgO、CS和Mg2SiO4组成。不同IC含量涂层的自腐蚀电流密度(icorr)比Mg至少都低一个数量级,能为镁基底提供更有效的保护。IC含量为0.4 g/L时Mg/UMAO/CS/IC涂层的耐蚀性更好,自腐蚀电流密度(1.667×10-6 A/cm2)最小。Mg/UMAO/CS/IC涂层可有效解决纯镁在临床骨内固定应用上降解过快的问题。  相似文献   

2.
以正硅酸乙酯(TEOS)为原料,采用溶胶-凝胶法合成纳米 SiO2 ,并用乙烯基三甲氧基硅烷(VTMS)进行表面改性,在高化学活性的镁锂(Mg-Li)合金表面制备了超疏水防腐蚀涂层。 利用红外光谱(FTIR)分析 SiO2 和改性 SiO2 的化学结构,通过扫描电子显微镜(SEM)观察不同氨水含量下制备的超疏水涂层的表面形貌。 采用接触角(CA) 测试超疏水涂层的疏水性,通过电化学阻抗谱(EIS)和动电位极化曲线分析超疏水涂层的防腐蚀性能,采用 X 射线光电子能谱 (XPS)分析 Mg-Li 合金表面的化学成分变化情况。 结果表明,当所用氨水与 TEOS 的质量比达到 1 ∶1时,制备的超疏水涂层表面表现出良好的粗糙度,接触角达到 151°,滚动角只有 5°。 超疏水纳米 SiO2 涂层对 Mg-Li 合金具有良好的防腐蚀性能,阻抗值达到 105 Ω,腐蚀电流密度仅为 6. 19×10-8 A/ cm2 。  相似文献   

3.
基于密度泛函理论(DFT)的第一原理方法计算了四方相和立方相中2种不同的Li7La3Zr2O12(LLZO)固体电解质材料的能带结构,晶格参数,态密度和成键特性。基于理论计算结果,通过电子结构特性解释了四面体相的离子电导率低于立方相的离子电导率的原因。基于LLZO的第一性原理计算,设计了2种晶体结构的LLZO材料,并通过高温固相法制备并分析了不同烧结时间的LLZO颗粒的性能。探索了合成工艺参数对Li7La3Zr2O12性能的影响。立方晶Li7La3Zr2O12(C-LLZO)的平均晶格大小为a=b=c=1.302 246 nm,而四方Li7La3Zr2O12(T-LLZO)的平均晶格大小为a=b=1.313 064 nm,c=1.266 024 nm。在1000 ℃下烧结12 h的C-LLZO为纯立方相,在室温(25 ℃)下最大离子电导率为9.8×10-5 S·cm-1。T-LLZO在室温(25 ℃)下的离子电导率为5.96×10-8 S·cm-1,在800 ℃下烧结6 h具有纯的四方相结构,与计算结果基本吻合。  相似文献   

4.
通过向电解液中添加有机酸植酸,提升了TC4钛合金微弧氧化涂层的耐腐蚀性能和热稳定性。通过扫描电子显微镜、X射线衍射仪、X射线光电子能谱仪和热冲击实验等技术手段,分析了植酸对涂层形成、形貌和性能的影响。结果显示,植酸的添加使放电微孔更加细小,提高了涂层的形成效率并优化了相结构。通过动电位极化测试,发现添加植酸显著提高了微弧氧化涂层的耐腐蚀性能。将电解液中的植酸浓度调整为12 mL/L(最佳植酸浓度)后,腐蚀电流密度由8.406×10-5 A·cm-2降低至2.580×10-6 A·cm-2。循环高温氧化试验结果表明,TC4钛合金的耐热冲击性能和高温抗氧化性能得到了改善。  相似文献   

5.
采用反应磁控溅射在掠射角度α=0°和α=80°的条件下制备氧化钨(WO3-x)薄膜,然后在其表面沉积二氧化钛(TiO2)。利用X射线衍射仪(XRD)、场发射扫描电镜(FE-SEM)和X射线光电子能谱仪(XPS)对WO3-x/TiO2薄膜的晶体结构、表面/断面形貌以及表面化学成分进行表征。在三电极体系1 mol/L LiClO4/PC溶液中,采用电化学工作站和紫外-可见分光光度计测试了WO3-x/TiO2薄膜的电致变色性能。XRD结果表明,WO3-x/TiO2薄膜为非晶态结构,与掠射角度无关。当掠射角度为80°时,获得了纳米柱状多孔薄膜。从 W 4f和Ti 2p的XPS谱图确认氧化钨为亚化学计量比的WO3-x,而氧化钛为满足化学计量比的TiO2。与致密薄膜相比,纳米柱状多孔薄膜需要较低的驱动电压且具有较快的响应速度。纳米柱状多孔薄膜的电荷容量为83.78 mC,是致密薄膜电荷容量30.83 mC的2倍以上。在±1.2 V驱动电压下,注入和脱出离子扩散速率分别为Din=5.69×10-10 cm2/s和Dde= 5.08×10-10 cm2/s。与纯WO3薄膜相比,WO3-x/TiO2薄膜的电致变色循环稳定性更好。纳米柱状多孔薄膜在可见光范围内具有较大的光调制幅度,因此其光密度变化(ΔOD)大于致密薄膜。  相似文献   

6.
为了改善有机硅树脂的固化条件及其涂层的防腐蚀性能,以γ-缩水甘油醚氧丙基三甲氧基硅烷(GPTMS)、硅酸乙酯(TEOS)、二甲基二乙氧基硅烷(DMDMS)为硅烷单体,采用溶胶-凝胶法制备了含环氧基的硅树脂(ESiR),并以磷化聚苯胺(PANI)为固化剂制备了硅树脂防腐蚀涂层,分析了PANI固化含环氧基硅树脂的固化反应。通过测试固化时间、涂层的柔韧性和硬度、热失重曲线等考察了PANI添加量对涂层固化程度的影响;通过附着力、接触角、吸水率、电化学阻抗谱和极化曲线测试了PANI添加量对涂层性能的影响。结果表明:当PANI添加量(质量分数)为3 %时,得到的涂层固化效果较好,涂层既具有良好的柔韧性,又有较高的硬度;且涂层表现出较好的疏水性、附着力和优异的防腐蚀性能,其接触角为103.5°,吸水率为8.91%;涂层的干、湿附着力均为0级;腐蚀电流密度为7.58×10-8 A/cm2,电化学阻抗值达到3.4×106 Ω·cm2。  相似文献   

7.
采用电沉积方法在Q235钢上制备Ni-Go复合镀层,研究添加稀土铈对复合镀层形貌、性能的影响。结果表明,当铈浓度为0.8 g.L-1,得到的复合镀层沉积速率增加到7.142 g.dm-2.h-1,,硬度达到608.8 HV,磨损量最小,摩擦系数最低为0.387,自腐蚀电位Ecorr(-0.3993 V)更正,同时腐蚀电流Icorr(3.258.10-6 A.cm-2)最小,腐蚀速率最低,复合镀层的耐腐蚀性能最优。研究发现,加入稀土铈后,Ni-1.0GO复合镀层的类似珊瑚状的微大尺寸的凸聚体变成了尺寸较小的珊瑚珠状的小凸聚体,镀层组织得到明显细化。在铈浓度为0.8 g.L-1,Ni-1.0GO-0.8RE复合镀层的组织致密性最好,各种性能达到最佳,主要在于稀土铈提高镀液中微粒的分散能力和阴极极化率的效果,提高氢离子在阴极的析出电位,从而抑制析氢反应的发生,使得复合镀层的性能得到进一步提高。  相似文献   

8.
目的 考察乙二醇-氟化铵电解液中氟化铵浓度对镁合金表面微弧氧化制备氟化物膜层结构和性能的影响,提高镁合金氟化物膜层的耐腐蚀性能。方法 在含不同浓度NH4F的EG-NH4F电解液中,采用微弧氧化的方法制备氟化物膜层,NH4F质量浓度分别为40、60、80、100、120 g/L。通过扫描电子显微镜(SEM)、X射线能量色散谱仪(EDS)和X射线衍射仪(XRD),对膜层表面微观形貌和成分组成进行分析,并通过电化学测试表征了膜层的腐蚀防护性能,通过盐雾试验评估了膜层长效防腐蚀行为,通过SEM和EDS表征了腐蚀形貌和腐蚀产物。结果 在EG-NH4F中制备膜层的物相组成主要是MgF2。随着NH4F浓度的提高,微弧氧化的起弧电压与工作电压均逐渐减小,膜层中氟含量逐渐增加,膜层的孔径减小,孔数量分布更加均匀,膜层表面粗糙度降低。质量浓度为100 g/L NH4F的膜层自腐蚀电流密度(Jcorr)为2.226×10‒7 A/cm2,较镁合金基材降低了1个数量级,极化电阻Rp增大到90.156 kΩ.cm2,其阻抗模量|Z|f=0.01 Hz=8.55×105 Ω.cm2,与镁合金基材的阻抗模量|Z|f=0.01 Hz=8.86×102 Ω.cm2相比,提高了3个数量级。结论 微弧氧化处理能够显著改善AZ31镁合金的腐蚀防护性能。NH4F浓度的增加有利于提高膜层的耐腐蚀性能,质量浓度为100 g/L NH4F的膜层耐腐蚀性能最优。  相似文献   

9.
采用电弧离子镀的方法制备了不同数目(1、2、4、6)双层结构的AlCrN/AlCrVN多层涂层,并研究了多层结构对涂层微观结构、力学、摩擦学和切削性能的影响。结果显示,沉积态AlCrN/AlCrVN多层涂层主要由固溶(Al,Cr)N组成,优先生长方向为[111]晶向。与其他多层涂层相比,具有6层双层结构的AlCrN/AlCrVN涂层在高温下表现出较低的摩擦系数(约0.46)和磨损率(0.15×10-11 m3/N·m),以及较高的硬度(HK0.05=38 000 MPa)和膜-基结合强度(LC2=53±1 N)。多层涂层相邻层之间形成了较多的界面,有助于提高多层涂层的硬度和耐磨性。切削试验结果显示,当切削磨损标准VB=0.2时,AlCrN/AlCrVN-6涂层具有较高的硬度和耐磨性,最长的切削长度为7.4 m。  相似文献   

10.
炭阴极在铝电解槽中受熔盐和铝液腐蚀而影响寿命,而TiB2涂层是铝电解槽理想的阴极材料。本文以石墨为基体,在KF-KCl-K2TiF6-KBF4熔盐中以0.4-0.7A.cm-2电流密度、700-800℃温度电沉积TiB2涂层,通过XRD衍射仪、SEM-EDS、表面粗糙度测量仪及附着力测试仪对不同电流密度和温度下制备的涂层进行表征。结果表明:在石墨基体上可以得到均匀连贯的TiB2涂层;增大电流密度、降低电解温度可以细化涂层晶粒,提高涂层致密性;在0.6 A.cm-2、750℃最优电沉积条件下制得的TiB2涂层的厚度为229 μm,择优取向为<110>,表面粗糙度为14.85 μm,涂层与石墨基体的结合力为6.39 MPa。  相似文献   

11.
Ceramic coatings with thickness of 27 µm were fabricated on Mg–7Li alloy in Na2SiO3–C6H18O24P6 solution by microarc oxidation (MAO). The morphology and phase composition of MAO coatings were characterized by scanning electron microscopy (SEM) and X‐ray diffraction (XRD). The corrosion behavior of the bare and MAO coated Mg–7Li alloy was investigated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). Results showed that the MAO coatings were composed of MgO, Li2O, and Mg2SiO4, and there existed some micropores on the coating surface with a diameter of 3–20 µm. The corrosion potential (Ecorr) and corrosion current density (Icorr) of the MAO coated alloy were about ?1.4761 V and 7.204 × 10?7 A/cm2, respectively. The Ecorr of the MAO coated alloy increased by 109.6 mV and its Icorr decreased by three orders compared with that of the bare Mg–7Li alloy. The EIS plots indicated that the impedance of the MAO coated alloy was 15 times higher than that of the bare alloy. The fitting parameters showed that the resistance of the MAO coatings was far greater than that of the bare alloy. The dense intermediate layer and the transition layer of the MAO coatings acted as a barrier to hinder the proceeding of solution permeation, remarkably improving the corrosion resistance of the Mg–7Li alloy.  相似文献   

12.
ZM5镁合金无铬前处理化学镀镍层的性能   总被引:1,自引:0,他引:1  
采用优化的Na4P2O7+Na2SO4+NaNO3体系的化学蚀刻无铬前处理化学镀镍工艺,在ZM5镁合金上制备Ni-P镀层。利用扫描电镜、能谱仪、X射线衍射仪分析镀层的微观形貌、成分和相结构。通过电化学方法和摩擦磨损试验评价了镀层的耐蚀性和耐磨性。结果表明:无铬前处理工艺制备的镀层中P的质量分数为12.90%。与ASTM标准的含铬前处理工艺得到的镀层的耐蚀性和耐磨性相比,无铬前处理得到的镀层的自腐蚀电位为-0.506V,腐蚀电流密度为2.132×10-6 A/cm2,接近ASTM工艺含铬前处理得到的镀层的耐蚀性能;同时其磨损率为3.056×10-4 mg/s,与ASTM工艺的1.778×10-3 mg/s相比,其抗摩擦磨损性能明显优于含铬前处理的镀层。无铬前处理化学镀镍显著提高了ZM5镁合金的耐蚀性和耐磨性。  相似文献   

13.
Single-layer TiN, gradient TiN and multi-layer Ti/TiN coating were deposited on silicon and uranium substrates by means of arc ion plating technique. The main phase in the single-layer TiN coating was TiN with a (111) preferred orientation. Ti and TiN were observed in the TiN gradient coating and Ti/TiN multi-layer coatings. The single-layer TiN coating has demonstrated the best wear resistance among the three coatings. Compared with the bare U substrate, the corrosion potential Ecorr of the multi-layer Ti/TiN coatings is increased by 580 mV, and the corrosion current density Icorr is decreased at least by two orders of magnitude. The multi-layer Ti/TiN coatings possessed the highest corrosion resistance among the three coating in a 0.5 μg/g Cl solution.  相似文献   

14.
为提高AZ31B镁合金表面的耐腐蚀性能,用火焰喷涂方法在镁合金表面制备Al-Mg_2Si复合涂层。采用XRD、SEM和EDS分析涂层的物相组成、微观组织及元素分布;通过电化学试验测试样品在3.5%NaCl溶液中的腐蚀电位、腐蚀电流密度;通过3.5%NaCl溶液浸泡试验测试样品的腐蚀速率;并测试涂层的显微硬度。结果表明:涂层中的主要物相有Mg_2Si、Al,组织比较致密,元素分布均匀。Tafel极化曲线测试表明,Al-Mg_2Si涂层样品与AZ31B镁合金样品相比腐蚀电位从-1.489 V正移到-1.366 V,腐蚀电流密度从2.817×10~(-3) A/cm~2降低到1.198×10~(-3) A/cm~2。浸泡试验结果表明,喷涂Al-Mg_2Si的镁合金的腐蚀速率明显低于没有喷涂的镁合金。显微硬度测试表明,涂层的显微硬度集中分布在259~308 HV0.05之间,镁合金为50~60 HV0.05。因此在AZ31B镁合金表面火焰喷涂Al-Mg_2Si涂层可以提高其耐腐蚀性能,表面硬度显著提高。  相似文献   

15.
针对碳钢腐蚀电位相对更负、更容易发生腐蚀的特点,在Q235钢表面制备超疏水TiO_2/PDMS涂层以提高其耐蚀性能。采用表面活性剂分散纳米TiO_2并进行改性,然后与PDMS混合,用溶胶凝胶法在Q235钢表面制备有聚二甲基硅氧烷(PDMS)过渡层的TiO_2/PDMS超疏水涂层。借助扫描电镜(SEM)、接触角测量仪、红外光谱(FT-IR)及X射线衍射仪(XRD)表征其表面涂层的表面形貌、化学成分及疏水性能,用电化学试验和浸泡试验测试其防腐性。结果表明:TiO_2/PDMS涂层表面具有独特的微纳结构,与水的接触角达到154.3°;其腐蚀电位由碳钢的-0.77 mV正移至超疏水涂层的-0.24 mV,腐蚀电流密度则下降两个数量级,即从5.02×10~(-6)A·cm~(-2)下降至3.95×10~(-8)A·cm~(-2);超疏水涂层的交流阻抗值高于碳钢基底3个数量级。经过7 d的3.5wt.%NaCl溶液浸泡,超疏水涂层并未发生失重。制备的TiO_2/PDMS超疏水涂层具有超疏水效果和良好的长期耐腐蚀性。  相似文献   

16.
为提高环氧涂层在腐蚀环境下的防腐性和持久性,合成一种负载有缓蚀剂苯并三唑(BTA)的苯并三唑@磺化聚苯胺功能化倍半硅氧烷(BTA@SPANI-POSS),随后将BTA@SPANI-POSS与环氧树脂共混得到BTA@SPANI-POSS环氧涂料,最后在Q235碳钢上制备数种复合环氧涂层。通过红外光谱、紫外可见光谱、扫描电子显微镜对BTA@SPANI-POSS的结构、缓蚀性能、表面形貌进行表征,利用接触角测量仪、电化学工作站研究所制备涂层的疏水性能和防腐性能。研究表明,随着SPANI-POSS的添加,涂层沾湿性能降低。电化学阻抗谱(EIS)和塔菲尔极化曲线测试结果表明,与SPANI-POSS环氧涂层相比,负载有BTA的BTA@SPANI-POSS环氧涂层对金属基底具有更高和更持久的保护能力,其中试样EB1.5%的腐蚀电流密度icorr为16.67?A·cm-2,其极化电阻Rp为2.467 M?·cm2,具有较低的腐蚀动态速率。在3.5 wt.%NaCl溶液中浸泡15 d后环氧涂层仍具有良好的防腐蚀效果,其阻抗值Z0.01Hz仍保留有第1 d时的2...  相似文献   

17.
The effect of an external magnetic field on the corrosion behaviour of a galvanic couple, zinc (Zn)–stainless steel (SS 316L), has been investigated in a 0·055 mol L?1 potassium chloride (KCl) solution. The impact of the orientation as well as the magnetic flux density B (Wb m?2) on the corrosion progression of the galvanic couple, is evaluated heuristically by monitoring the corrosion potential Ecorr (mV) and the current density Icorr (μA cm?2) of the system. A strong influence of the magnitude and orientation of the magnetic field on the Zn–SS316L galvanic couple corrosion was observed, whereas the field was proven to act either protective or accelerating in terms of corrosion.  相似文献   

18.
The effects of a deposition current density (c.d.) on the corrosion behaviour of Zn–Mn alloy coatings, deposited from alkaline pyrophosphate solution, were investigated by atomic absorption spectrophotometry (AAS), X-ray diffraction (XRD), atomic force microscopy (AFM), optical microscopy, electrochemical impedance spectroscopy (EIS) and measurement of corrosion potential (Ecorr). XRD analysis disclosed that zinc hydroxide chloride was the main corrosion product on Zn–Mn coatings immersed in 0.5 mol dm−3 NaCl solution. EIS investigations revealed that less porous protective layer was produced on the alloy coating deposited at c.d. of 30 mA cm−2 as compared to that deposited at 80 mA cm−2.  相似文献   

19.
为了研究纳米多层膜的耐腐蚀性能以及腐蚀磨损机理,采用离子源辅助磁控溅射在TC4钛合金表面制备不同调制周期的CrSiN/SiN纳米多层膜。使用扫描电子显微电镜、能谱仪表征涂层的微观结构、腐蚀形貌以及元素分布;使用划痕仪、纳米压痕仪、维氏硬度计测量涂层的膜基结合力、硬度、弹性模量及断裂韧性,采用电化学工作站以及销盘磨损仪测量涂层耐腐蚀性和腐蚀磨损性。结果表明:调制周期为90 nm与360 nm时涂层耐腐蚀性能较好,腐蚀电流密度分别为1.31×10~(-8)A·cm~(-2)和1.20×10~(-8)A·cm~(-2)。此外,调制周期为45nm时,涂层硬度及弹性模量最大,分别为(22.5±0.6)GPa和(226.4±6.3)GPa,且腐蚀磨损率最低,为9.67×10~(-7)mm~3·N~(-1)·m~(-1)。多层膜结构显著改善了TC4钛合金的耐腐蚀及腐蚀磨损性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号