首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
以葡萄糖为碳源,尿素作为钝化剂,分别采用了水热法和微波法制备两种还原性较强的碳点,探讨了还原反应pH、还原剂用量、沉淀反应pH值,对含铬废水处理效果的影响。结果表明,无论水热法还是微波法制备的碳点,其对含铬废水的最佳处理效果是在pH=1.5下进行,搅拌1 h,三价铬通过沉淀除去,沉淀pH=8.5左右,处理液放置沉淀3 h以上。  相似文献   

2.
铁碳微电解处理含铬废水的试验研究   总被引:1,自引:0,他引:1  
采用铁碳微电解法处理含铬废水,研究了废水中Cr(VI)、Cu2+和Ni2+的去除效果。结果表明,采用铁碳微电解法处理含铬废水对Cr(VI)的去除效果较好,出水Cr(VI)含量低于0.1mg/L;但对Cu2+和Ni2+的去除效果不佳,Cu2+和Ni2+的去除率分别为10%~50%和≤30%。经铁碳微电解法处理后,废水的铁含量增大,需要通过后续处理使出水中铁和其他离子达标排放。与常规的焦亚硫酸钠还原工艺相比,铁碳微电解处理含铬废水可节省75%以上的成本。  相似文献   

3.
铁屑法处理电镀含铬废水的试验及应用   总被引:4,自引:0,他引:4  
介绍了一种处理电镀含铬废水的方法——铁屑法,就该法对六价铬去除率的影响因素:pH、铁屑用量、搅拌时间进行了静态试验,得到了较佳的反应工艺参数。在静态实验的基础上,研究了以铁屑为填料的反应柱动态处理废水的效果,并成功地运用于电镀废水的实际处理。结果表明:六价铬的去除率达到99.9%以上,出水达到国家排放标准。  相似文献   

4.
0 前言 含铬废水是一类危害性较大的污染物.由于六价铬的剧毒性,国家将其列为第一类污染物.六价铬的处理通常采用还原、沉淀的处理工艺,即先通过投加还原剂将六价铬还原成三价铬,再调节废水pH值,并投加絮凝剂,使其沉淀得以去除.这种方法流程长,且需要消耗多种化学药剂,处理成本高.  相似文献   

5.
ORP 自控技术处理含铬废水时,还原六价铬所需的氧化还原电势的设定,不能照抄文献数据,而必须根据含铬废水的组分,确定正确的电势值。  相似文献   

6.
将粉煤灰、粘土及木炭粉按比例混合,烧制成陶粒,以铬(Ⅲ)质量浓度20mg.L-1的水溶液模拟废水为研究对象,利用粉煤灰制备的陶粒吸附处理铬(Ⅲ),测试单位时间水流量、pH值、温度对除铬效果的影响。结果表明当粉煤灰、粘土及木炭粉的比例为85∶10∶5时陶粒同时具有较好的吸水性和抗压强度,在最佳条件下铬(Ⅲ)去除率可达99%以上。  相似文献   

7.
将粉煤灰、粘土及木炭粉按比例混合,烧制成陶粒,以铬(Ⅲ)质量浓度20 mg/L的水溶液模拟废水为研究对象,利用粉煤灰制备的陶粒吸附处理铬(Ⅲ),测试单位时间水流量、pH值、温度对除铬效果的影响。结果表明,当粉煤灰、粘土及木炭粉的比例为85∶10∶5,时陶粒同时具有较好的吸水性和抗压强度,在最佳条件下铬(Ⅲ)去除率可达99%以上。  相似文献   

8.
粉煤灰陶粒在处理含铬废水中的应用研究   总被引:3,自引:0,他引:3  
张顺成  郎建峰  曾武 《粉煤灰》2010,22(6):32-35
将粉煤灰、黏土及木炭粉按比例混合,烧制成陶粒,以铬(Ⅲ)质量浓度20 mg/L的水溶液模拟废水为研究对象,利用粉煤灰制备的陶粒吸附处理铬(Ⅲ),测试单位时间水流量、pH值、温度对除铬效果的影响。结果表明当粉煤灰、黏土及木炭粉的比例为85:10:5时陶粒同时具有较好的吸水性和抗压强度,在最佳条件下铬(Ⅲ)去除率可达99%以上。  相似文献   

9.
丁翼 《铬盐工业》1996,(2):19-29
从我国铬盐生产及应用实际出发,扼要介绍几种含铬废水回收利用方法,包括:六价铬废水回收铬酸铅、溶剂萃取法回收铬酸、离子交换法处理镀铬废液、利用鞣革废液制碱式硫酸铬或氧化铬以及碱式硫酸铬与有机合成产品联产等方法。指出了含铬废水回收利用工作的重要意义。  相似文献   

10.
1 概况 太化集团公司化学厂年产1000t糠醇。生产中由于触媒废水未能治理,一直是外购触媒生产糠醇。外购触媒价格高、活性低,直接影响糠醇的生产成本(外购触媒7万元/t,自产触媒4~5万元/t,以年用触媒15t计,自产触媒年可节约35~40万元,吨糠  相似文献   

11.
活性炭-珍珠岩复合材料处理含铬废水的研究   总被引:1,自引:0,他引:1  
采用活性炭-珍珠岩复合材料处理含铬废水,分别试验了复合材料的投加量、吸附时间、pH值、温度、含铬废水初始浓度等因素对Cr(Ⅵ)去除率的影响.结果表明,当活性炭与珍珠岩质量比为10∶1,活性炭投加量为0.5 g/mL,珍珠岩为0.05 g/mL,pH为4,吸附时间为130 min,温度为25℃时,铬的去除率最佳,可以达到96%.  相似文献   

12.
浅谈铁氧体法处理电镀含铬废水   总被引:10,自引:0,他引:10  
铁氧体法是化学法处理电镀含铬废水中较为实用的一种方法。介绍了铁氧体法处理含铬废水的基本原理,一般工艺流程、间歇式工艺流程与连续式工艺流程,以及主要技术参数,包括硫酸亚铁的投加量和投加方式、氧化还原反应时间、不同阶段废水酸碱度的控制、加热温度的控制以及通气量。提出了铁氧体法处理电镀含铬废水今后研究的重点。  相似文献   

13.
刘培  陈晨 《电镀与涂饰》2013,32(5):45-48
以NaHSO3为还原剂,新型重金属离子捕集剂DTCR为螯合剂,采用螯合沉淀法处理含铬电镀废水。研究了还原剂投加量、还原反应阶段的废水pH、螯合剂投加量、絮凝剂(PAM)投加量、螯合沉淀阶段的废水pH和搅拌时间对处理效果的影响。还原反应的较优工艺为:NaHSO3200mg/L,废水pH1.84,搅拌时间30min。螯合沉淀的最佳工艺条件为:DTCR70mg/L,PAM8mg/L,废水pH8.0,搅拌时间40min。采用最佳螯合沉淀工艺处理含铬电镀废水时,总铬去除率在95%以上,出水总铬为0.14mg/L,且未检测到其他重金属离子,可达标排放。  相似文献   

14.
采用NF-1812卷式纳滤膜在室温条件下对含铬废水进行处理,考察了压力、浓度等对纳滤膜去除Cr(Ⅲ)、Cr(Ⅵ)的效果的研究。纳滤膜对铬离子的分离受到铬离子的形态、操作压力、料液的质量浓度等综合影响。在0.25—0.55 MPa压力范围内,随着操作压力的不断升高,膜分离过程的动力差变大,膜通量也随之变大,废水处理能力也增大,但是纳滤膜对铬离子的截留率均有一定程度的下降,其中Cr(Ⅲ)的截留率从93%降低至89%,Cr(Ⅵ)的截留率从37%降低至31%,NF-1812纳滤膜对三价铬的截留率总体上高于六价铬。在铬离子质量浓度为0.05—0.20 g/L范围内,纳滤膜对铬离子的截留率随质量浓度增加有所下降,但Cr(Ⅵ)质量浓度对截留率的影响较小。实验结果表明:NF-1812卷式纳滤膜可有效处理含铬废水中的三价铬离子。  相似文献   

15.
铁炭微电解材料在工业废水处理中的应用研究   总被引:2,自引:0,他引:2  
采用自制铁炭微电解材料(MEM)对7种实际难降解典型工业废水进行处理,考察了初始pH值、MEM投加量、曝气时间、絮凝pH值以及MEM的铁炭质量比对7种废水中目标污染物去除率的影响,并优化了处理工艺条件.试验结果表明,不同类型废水的优化处理工艺各不相同,但pH值是影响废水处理的主要因素;处理不同类型废水,MEM的铁炭质量比不同.在优化条件下,铁炭微电解对印染、制药废水的CODCr去除率达到60%以上,对果汁、农药废水的CODCr去除率达到45%以上,对造纸废水的CODCr去除率达到35%以上,对电镀废水总铬去除率、多晶硅废水氟化物去除率达到90%以上;经处理后7种废水的色度均可降至40倍以下.  相似文献   

16.
选用焦亚硫酸钠和硫酸亚铁两种还原剂联合还原处理高浓度含铬废水,并用PAM做混凝剂,利用正交实验通过对出水水质和重金属污泥产量的分析得出各阶段的最佳参数,最终出水Cr6+质量浓度为0.19 mg/L,总去除率为99.99%。该法在还原Cr6+时无需不断调整pH,大大简化了操作过程。同时对中试生产进行了监测,出水各指标均达到《电镀污染物排放标准》(GB 21900—2008)的要求。  相似文献   

17.
胡晓峰 《江西化工》2009,(2):125-127
综合比较了较常用的处理含铬废水的工艺,结合水质、经济条件等选用了二氧化硫还原法。对二氧化硫的处理工艺的工艺流程进行了介绍,该工艺满足设计要求,基本上实现了二氧化硫的闭路循环,处理水的排放达到了国家规定排放标准。  相似文献   

18.
本论文以正硅酸乙酯为硅源、偏铝酸钠为铝源、四丙基氢氧化铵为模板剂,利用水热合成法制备ZSM-5沸石分子筛并将其应用到吸附水中六价铬的研究,考察了吸附时间、铬酸钾溶液pH值、吸附剂用量、吸附温度对吸附效果的影响。结果表明,最佳吸附条件是:吸附剂的使用量为0.5g,铬酸钾溶液pH值为5,吸附时间为60 min,吸附温度为30℃,此时,六价铬的去除率最高,达到了93.46%。  相似文献   

19.
含阳离子染料的废水混凝处理研究   总被引:1,自引:0,他引:1  
计建洪 《天津化工》2004,18(6):47-49
通过正交试验研究分别用混凝剂PAC、Al2穴SO4雪3与助凝剂PAM复配对阳离子染料废水进行混凝处理。考察了混凝剂的投加量、助凝剂的用量、溶液的pH值、混凝时间对混凝效果的影响。研究结果表明:混凝剂选用Al2穴SO4雪3效果比PAC好,在溶液pH值为8,Al2穴SO4雪3投加量为750mg/L,PAM的用量为4mg/L,搅拌时间0.5min时,对废水处理得到较为满意的效果,COD的去除率达67.8%以上。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号