共查询到17条相似文献,搜索用时 62 毫秒
1.
2.
AB-8大孔树脂对柴胡总黄酮的吸附行为研究 总被引:1,自引:0,他引:1
采用静态吸附法研究了AB-8树脂对柴胡总黄酮的吸附动力学及热力学特性。动力学研究表明,准二级动力学模型能较好地描述整个吸附过程;颗粒内扩散模型拟合的曲线呈现多重线性,说明不同阶段的吸附速率受到树脂孔径分布的影响。热力学研究表明,在实验温度下,AB-8树脂对柴胡总黄酮的吸附过程符合Langmuir等温模型,吸附的吉布斯自由能变ΔG<0,焓变ΔH和熵变ΔS分别为10.51 kJ/mol和44.15 J/(mol.K),说明该吸附能是自发进行的吸热过程。 相似文献
3.
4.
缑卫军 《精细与专用化学品》2019,27(1)
采用AB-8大孔吸附树脂法分离纯化槐米水提取物中的芦丁,利用紫外分光光度法测量芦丁的浓度,计算其收率和含量。考察了加样时吸附液体积、pH值、流速以及洗脱时解吸液浓度、温度、流速等因素对芦丁收率的影响。大孔吸附树脂纯化槐米中芦丁的最佳条件为:加样时吸附液体积为1900mL,pH值为4~5,吸附液流速10mL/min;洗脱时采用70%的酒精水溶液作解吸液,解吸温度为70℃,流速为10mL/min左右。获得的芦丁产品相对于原料槐米的收率为17.6%,含量为99.06%。 相似文献
5.
比较了8种大孔吸附树脂D101、AB-8、NKA-9、D4020、S-8、200702、H103、NKA-Ⅱ对菊米总黄酮的吸附性能,以大孔吸附树脂对菊米总黄酮的吸附率、洗脱率为评价指标,筛选出合适的大孔吸附树脂分离纯化菊米总黄酮,并以静态实验、动态试验考察大孔树脂对菊米总黄酮的分离纯化效果及影响因素,优化吸附和解吸条件。结果表明:200702中极性树脂分离纯化菊米总黄酮效果较好,其最佳吸附工艺为:上样液pH 5~6,质量浓度0.35 mg?mL-1,上样液流速3.0 mL?min-1,最佳洗脱工艺为:70%乙醇溶液30 mL,洗脱速率2.5 mL?min-1,通过本工艺菊米总黄酮纯度达83.5%。 相似文献
6.
7.
8.
9.
10.
11.
为研究大孔树脂分离纯化侧柏叶黄酮提取物的最佳工艺条件,通过静态试验筛选适宜的树脂型号分离侧柏叶黄酮后,采用动态试验分别考察上样浓度、上样液pH值、上样流速与体积、洗脱液体积分数及洗脱流速对侧柏叶黄酮吸附、解吸性能的影响。结果表明,AB-8型树脂适宜分离纯化侧柏叶黄酮粗提物,最佳纯化工艺条件为:pH值为6、3mg·m L-1上样溶液60m L,以2.0m L·min-1流速上样后,采用体积分数为70%乙醇溶液140m L,以1.0m L·min-1流速洗脱,纯化后样品的黄酮纯度由(24.7±0.8)%提高至(68.2±1.1)%,表明该纯化工艺分离效果可靠,可用于侧柏叶黄酮的富集。 相似文献
12.
13.
14.
15.
16.
大孔树脂纯化萼翅藤总黄酮工艺 总被引:1,自引:0,他引:1
筛选纯化萼翅藤总黄酮的最佳树脂,并对影响这种树脂分离的主要因素进行研究,确定大孔树脂纯化总黄酮的最佳工艺参数。选择4种大孔树脂分别对萼翅藤总黄酮进行静态与动态吸附性能研究,考察影响分离的各种因素如上样液pH值、上样液质量浓度、上样量和洗脱剂体积分数等。HPD-450树脂分离效果最好,Langmuir等温吸附模型较Freundlich模型更适宜描述树脂对萼翅藤总黄酮的吸附,其吸附分离萼翅藤总黄酮的最佳工艺为:上样液pH值为5,质量浓度为0.6—0.8 mg/mL,上样量为3 BV(树脂床体积),洗脱液为体积分数70%的乙醇,洗脱剂用量为3 BV。经HPD-450树脂吸附分离后,总固物中总黄酮质量分数从20.23%提高到75.86%,纯度提高了3倍多,回收率为62.65%。 相似文献
17.
《应用化工》2022,(2):301-305
为全组分高值化利用柑橘皮渣,研究了富含果胶和黄酮类化合物的柑橘皮渣干燥工艺。依次采用热风干燥和微波真空干燥脱除柑橘皮渣的水分,考察柑橘皮渣铺放厚度、干燥温度、干燥时间对皮渣含水率、果胶和总黄酮含量的影响。结果表明,热风干燥的最佳工艺条件为:皮渣铺放厚度2.0 cm,60℃干燥0.5 h;微波真空干燥的最佳工艺条件为:真空度-0.085 MPa,铺放厚度2.5 cm,50℃干燥2.0 h。在该条件下,柑橘皮渣含水率降至10%以下,果胶含量损失少于20%,总黄酮含量损失少于15%。该干燥工艺简单,可操作性好,能在脱除柑橘皮渣水分的同时最大限度保留了其中的果胶和黄酮类化合物,为全组分高值化利用柑橘皮渣提供有益的参考,为异地提取柑橘皮渣中果胶、黄酮等活性物质提供方便。 相似文献