共查询到19条相似文献,搜索用时 62 毫秒
1.
中文临床电子病历命名实体识别是实现智慧医疗的基本任务之一.本文针对传统的词向量模型文本语义表示不充分,以及循环神经网络(RNN)模型无法解决长时间依赖等问题,提出一个基于XLNet的中文临床电子病历命名实体识别模型XLNet-BiLSTM-MHA-CRF,将XLNet预训练语言模型作为嵌入层,对病历文本进行向量化表示,解决一词多义等问题;利用双向长短时记忆网络(BiLSTM)门控制单元获取句子的前向和后向语义特征信息,将特征序列输入到多头注意力层(multi-head attention,MHA);利用MHA获得特征序列不同子空间表示的信息,增强上下文语义的关联性,同时剔除噪声;最后输入条件随机场CRF识别全局最优序列.实验结果表明,XLNet-BiLSTM-Attention-CRF模型在CCKS-2017命名实体识别数据集上取得了良好的效果. 相似文献
2.
随着互联网技术的快速发展,人类已经习惯于从网络上获取知识,然而伴随着网络资源爆炸式增长,网络资源内容多样,人们使用浏览器获取知识的方法却停滞不前,因此需要一种工具来帮助人们从网络中高效地获取和发现新知识.由于网络资源文本并不是完全结构化的数据,还包括一些自由文本等复杂的无结构数据,这种文本信息虽然方便人们自由表达概念以及事件等,但是同时也为机器搜索、统计分析等制造了障碍.因此,为了在文本上更方便地进行知识分析和挖掘,本文提出一种基于深度学习的算法知识实体识别与发现的方法,应用于算法知识领域来解决上述问题.通过创建算法知识专家库[1],训练词向量,建立深度神经网络模型,从算法知识文本中识别和发现算法知识名称.实验结果表明,该深度神经网络模型识别算法知识的准确率高达98%,并有效发现了专家库以外的新知识点,实现了预期实验需求. 相似文献
3.
针对军事领域的命名实体识别问题,提出一种基于BiLSTM-CRF的实体识别方法,旨在识别军事文本中的人名、军用地名、军事机构名、武器装备、设施目标、部队番号等军事命名实体。使用词嵌入方法自动学习中文字符的分布式表示作为模型输入;利用双向长短时记忆(Bi-directional Long-Short Term Memory,BiLSTM)神经网络处理输入的字符向量序列,统筹上下文语义学习任务特征;将学习到的特征接入线性链式条件随机场(CRF)进行军事命名实体标注,获得命名实体识别结果并输出。在人工构建数据集上的实验结果表明,提出的方法能够很好地完成军事命名实体识别任务。 相似文献
4.
为解决传统施工安全管理中对事故报告信息分析效率低的问题,利用自然语言处理(Natural Language Processing,NLP)技术,提出基于双向编码器表示(Bidirectional Encoder Representations from Transformers,BERT)的施工安全事故文本命名实体识别方法。以自建的施工安全事故领域实体标注语料数据集为研究对象,首先利用BERT预训练模型获取动态字向量,然后采用双向长短时记忆网络-注意力机制-条件随机场(BiLSTM-Attention-CRF)对前一层输出的语义编码进行序列标注和解码以获取最优文本标签序列。实验结果表明,该模型在自建数据集上的F1值分数为92.58%,较基准模型BiLSTM-CRF提升了4.19%;该方法对事故时间等5类实体识别F1值均可达到91%以上,验证了该方法对施工安全事故实体识别的有效性,说明模型可用于实际施工知识管理中并指导建筑安全管理的安全培训。 相似文献
5.
命名实体识别是自然语言处理领域的一项关键任务,其目的在于从自然语言文本中识别出具有特定含义的实体,如人名、地名、机构名和专有名词等。在命名实体识别任务中,研究人员提出过多种方法,包括基于知识和有监督的机器学习方法。近年来,随着互联网文本数据规模的快速扩大和深度学习技术的快速发展,深度学习模型已成为命名实体识别的研究热点,并在该领域取得显著进展。文中全面回顾现有的命名实体识别深度学习技术,主要分为四类:基于卷积神经网络模型、基于循环神经网络模型、基于Transformer模型和基于图神经网络模型的命名实体识别。此外,对深度学习的命名实体识别架构进行了介绍。最后,探讨命名实体识别所面临的挑战以及未来可能的研究方向,以期推动命名实体识别领域的进一步发展。 相似文献
6.
目的:比较条件随机场、长短期记忆模型、BiLSTM-CRF和使用Bert预训练字符向量的BiLSTM-CRF四种命名实体识别模型.方法:分析比较四种模型在人民日报数据集和MSRA数据集上对人名、地点和机构三类实体的识别性能.结果:单一神经网络LSTM在缺乏训练数据支持的结果表现不如CRF,而使用了Bert预训练字符向量... 相似文献
7.
8.
为了提升数字化法律文书知识库的建设效率,文中提出了基于深度学习理论的法律文书识别方法。该方法基于长短期记忆(LSTM)网元结构构建深度神经网络,引入遗忘门进行网元的状态更新,使用Softmax函数作为非线性传播函数,实现自然语言中的实体识别。经测试,该方法可以有效的提取法律文书中的当事人姓名、案由和审判机构等;在文中所采用的测试集上,相较于CRFs算法,该方法在准确率、召回率和F上均可以取得约10%的提升。 相似文献
9.
基于层叠隐马尔可夫模型的中文命名实体识别 总被引:29,自引:0,他引:29
提出了一种基于层叠隐马尔可夫模型的中文命名实体一体化识别方法,旨在将人名识别、地名识别以及机构名识别等命名实体识别融合到一个相对统一的理论模型中。首先在词语粗切分的结果集上采用底层隐马尔可夫模型识别出普通无嵌套的人名、地名和机构名等,然后依次采取高层隐马尔可夫模型识别出嵌套了人名、地名的复杂地名和机构名。在对大规模真实语料库的封闭测试中,人名、地名和机构识别的F-1值分别达到92.55%、94.53%、86.51%。采用该方法的系统ICTCLAS在2003年5月SIGHAN举办的第一届汉语分词大赛中名列前茅。 相似文献
10.
11.
针对传统CNN在有遮挡人脸识别中计算量大的问题,文中以L1-2DPCA为基础,提出了一种用于人脸识别的新型PCANet深度学习网络.该网络以L1-2DPCA学习多个卷积层的滤波器,在卷积层之后,通过二进制散列和逐块直方图进行池化.文中以CNN、PCANet、2DPCANet和L1-PCANet作为比较,在AR和RMFD... 相似文献
12.
13.
14.
雷达干扰信号准确识别是雷达抗干扰的前提,对于雷达生存至关重要。针对传统雷达干扰信号识别方法需要繁琐的分析计算提取特征,通用性差,泛化能力弱,难以适应复杂的雷达工作环境问题。本文考虑无需人工提取特征信息且具有较好的分类识别效果的深度学习网络。考虑到传统的深度学习网络由于使用点估计方式,不能够很好的衡量预测结果中的不确定性,本文提出了一种基于贝叶斯深度学习的干扰识别方法。首先,通过概率建模代替网络参数模型的点估计,解决了不确定性随机数据引起的网络过拟合问题。其次,考虑有效利用雷达回波信号的时序特性设计了LSTM层,同时解决训练过程中的梯度消失问题。基于线性调频雷达有源干扰实测数据完成了网络训练与测试,实验结果表明,引入贝叶斯方法可以在加快网络收敛速度的同时有效提高识别准确率。 相似文献
15.
作为非接触式生物识别方法之一,人脸识别在诸多情况下被广泛使用。然而,传统的人脸识别方法由于识别准确度低以及在多个场合的应用受到限制,已不能满足目前的需求。文中提出了采用深度学习的方法来实现脸部标志检测和无限制人脸识别。为解决人脸标志检测问题,使用一种深层卷积神经网络的逐层训练方法,以帮助卷积神经网络进行收敛,并提出了一种避免过拟合的样本变换方法;为了解决人脸识别问题,文中提出了一种SIAMESE卷积神经网络,其在不同部位和尺度上进行训练。实验测试显示,ORL和人脸识别算法的精度分别达到了91%和81%。 相似文献
16.
基于人体骨架的动作识别具有鲁棒性和视点不变性的优点,为进一步提高骨架动作识别的识别率,打破以往大部分基于深度学习的方法的输入内容为人体关节坐标的局限性,文中提出一种将几何特征与LSTM网络结合的人体骨架动作识别算法。该算法选择基于关节与选定直线之间距离的几何特征作为网络的输入,引入了一种时间选择LSTM网络进行训练。利用时间选择LSTM网络拥有选出最具识别性时间段特征的能力,在SBU Interaction数据集和UT Kinect数据集上分别取得了99.36%和99.20%的识别率。实验结果证明了该方法对人体骨架动作识别的有效性。 相似文献
17.
18.
随着社会信息化水平的提高及不稳定因素的增加,人们迫切需要更加可靠的识别技术对身份进行认证。因此,利用生物特征进行鉴定已成为时下热潮。其中的指纹识别更是因其方便性和可靠性受到普遍认同。传统的指纹识别方法基于特征点比对寻求相似性,此种方法特征点寻找容易出错,且随着指纹的模糊、破坏、污损或是其他问题,均会使识别率明显降低。针对这些问题,该文提出基于深度卷积神经网络(CNN)的CBF-FFPF(Central Block Fingerprint and Fuzzy Feature Points Fingerprint)算法对污损指纹图像进行分类识别。CBF-FFPF算法提取指纹中心点分块图像及特征点模糊化图,合并后输入CNN网络,进行指纹深层特征识别。将该算法与基于主成分分析(KPCA),超限学习机(ELM)和k近邻分类器(KNN)的指纹识别算法进行比较,实验结果表明,所提出的CBF-FFPF算法对污损指纹识别有更高的识别率和更好的鲁棒性。 相似文献
19.
手语识别涉及计算机视觉、模式识别、人机交互等领域,具有重要的研究意义与应用价值。深度学习技术的蓬勃发展为更加精准、实时的手语识别带来了新的机遇。该文综述了近年来基于深度学习的手语识别技术,从孤立词与连续语句两个分支展开详细的算法阐述与分析。孤立词识别技术划分为基于卷积神经网络(CNN)、3维卷积神经网络(3D-CNN)和循环神经网络(RNN) 3种架构的方法;连续语句识别所用模型复杂度更高,通常需要辅助某种长时时序建模算法,按其主体结构分为双向长短时记忆网络模型、3维卷积网络模型和混合模型。归纳总结了目前国内外常用手语数据集,探讨了手语识别技术的研究挑战与发展趋势,高精度前提下的鲁棒性和实用化仍有待于推进。
相似文献