共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
为了减少煤炭燃烧过程中NOx的排放,在管式炉中进行了煤与金属助剂(FeCl3、NiCl2)的热解实验,研究了助剂负载量、热解温度、助剂添加方式对氮迁移及N2产率的影响并且对复合助剂作用机理进行了探讨。结果表明:随着助剂负载量的增加,氮脱除率及N2产率呈现先增加后趋于稳定的趋势,且负载量以0.8%Fe复合1.0%Ni为最佳。在700~1000℃的热解温度范围内氮脱除率及N2产率随热解温度的增加而增加。对煤进行溶胀处理添加复合助剂后,氮脱除率及N2产率要优于未经处理的煤样。铁基助剂与镍基助剂在催化煤热解氮迁移过程中形成互补,铁基助剂的添加增加了镍基助剂的活性,弥补了单助剂的劣势,且复合助剂相比于单助剂有更强的氮脱除效果并且N2产率达到最高39%。铁镍复合助剂对煤中N-5转化为N2的催化效果更加明显,因为复合助剂对吡咯的内氢转移和开环有更强的催化作用。本研究能够为煤炭洁净化利用提供理论和实验依据。 相似文献
3.
重金属元素在煤热解过程中的分布迁移规律 总被引:8,自引:1,他引:8
针对大同煤、神府煤和新汶煤 ,进行热解实验 ,计算了煤中五种重金属元素砷( As)、镉 ( Cd)、铬 ( Cr)、汞 ( Hg)和铅 ( Pb)在热解三相产物中的分配比例 .进行正交设计实验 ,研究了热解终温、热解升温速率及煤中的灰分含量对重金属元素在热解反应中的分布、迁移的影响 ,发现热解工况和灰分含量对重金属元素在热解产物中的含量有相关性 .采用三变量相关分析法 ,建立了重金属元素在热解产物中的回归模型 ,用该模型对不同热解产物中的重金属含量的实测值进行预报 ,结果表明实测值与预报值有较好的符合 相似文献
4.
5.
6.
由于散煤燃烧会造成严重的环境污染,尤其是其排放的氮氧化物对大气环境破坏严重,煤热解作为煤燃烧、气化的伴随过程,具有重要的研究意义,而探究煤中氮元素在热解过程中的迁移规律,了解氮氧化物前驱物的生成条件对后续含氮污染物的控制起到决定性作用,在实际的热解过程中,多种因素共同制约着含氮物相的迁移方向,通过煤阶、粒径、热解温度、矿物质种类这些影响因素,可以得到:煤阶越高,挥发分越不易析出,在一定程度上,高煤化度煤氮易留在焦中,中等煤化度煤氮则易于进入挥发分中,煤颗粒粒径越大,挥发分也同样不易析出,而热解温度则对挥发氮和焦氮形成均有促进作用,不同金属离子对含氮物相析出有不同的效果。 相似文献
7.
采用管式炉固定床反应器,考察了平朔煤( PS)、神木煤( SM)和阳城煤( YC)三种不同变质程度的煤种在热解过程中的HCN和NH3 释放规律,主要讨论煤中所固有的矿物质在这一过程中对氮分配的影响.结果表明:不同变质程度的煤种脱除矿物质后,均表现为热解过程中的NH3释放量减少,其减少程度与灰分的性质有关;而HCN的释放与煤中矿物质的关系却受煤变质程度的影响;同时矿物质对不同形态氮的分配也有明显的作用. 相似文献
8.
煤中氮在热解过程中释放规律的数学模拟 总被引:1,自引:1,他引:1
以化学渗透模型(CPD)为基础构建煤的结构,以实验数据为基础,通过对煤中氮在热解阶段反应历程的描述,以及对NOx的主要前驱体HCN和NH3生成的动力学表达,建立了煤热解阶段氮释放的模型,将模型的计算结果与五种煤在管式固定床反应器中热解阶段形成HCN和NHx的测定结果进行比较,研究发现:模型能够相对准确的预测HCN形成(误差在20%以内),但由于没有考虑惰质组的影响,对部分煤NHx的模拟误差较大(甚至超过50%),模型也表达出在快速热解条件下随温度升高,HCN和NHx的生成量增加;随煤阶增加,HCN生成量减少;随惰质组含量增加,NHx的生成量增加的释放规律。 相似文献
9.
10.
11.
12.
《应用化工》2022,(9):2141-2144
以非离子型表面活性剂为吸收剂吸收乙酸丁酯废气,研究了不同类型的Tween表面活性剂和Span-80对乙酸丁酯废气的吸收效果,并以复配表面活性剂为吸收剂分析了吸收剂温度、液气比、进塔浓度对乙酸丁酯废气吸收率的影响。结果表明,Tween-80水溶液对乙酸丁酯吸收率最高,加入Span-80后不但能够消除起泡现象还能提高乙酸丁酯吸收率,其加入量越大吸收率越大。以体积浓度3.0%的Tween-80与3.0%的Span-80复配水溶液吸收乙酸丁酯废气,在吸收剂温度为10℃,进塔废气流量为1.0 m3/h,液气比为15 L/m3/h,液气比为15 L/m3时,乙酸丁酯吸收率可达90.65%。吸收剂在解吸后循环使用,其吸收率为81.21%,且随着解吸次数的增加吸收率略有降低。 相似文献
13.
《应用化工》2019,(9):2141-2144
以非离子型表面活性剂为吸收剂吸收乙酸丁酯废气,研究了不同类型的Tween表面活性剂和Span-80对乙酸丁酯废气的吸收效果,并以复配表面活性剂为吸收剂分析了吸收剂温度、液气比、进塔浓度对乙酸丁酯废气吸收率的影响。结果表明,Tween-80水溶液对乙酸丁酯吸收率最高,加入Span-80后不但能够消除起泡现象还能提高乙酸丁酯吸收率,其加入量越大吸收率越大。以体积浓度3.0%的Tween-80与3.0%的Span-80复配水溶液吸收乙酸丁酯废气,在吸收剂温度为10℃,进塔废气流量为1.0 m~3/h,液气比为15 L/m~3时,乙酸丁酯吸收率可达90.65%。吸收剂在解吸后循环使用,其吸收率为81.21%,且随着解吸次数的增加吸收率略有降低。 相似文献
14.
采用散堆填料塔,分别考察了油酸甲酯、油酸乙酯和油酸甲酯-油酸乙酯复合溶剂对废气中醋酸丁酯的吸收性能.分析了醋酸丁酯质量浓度、油酸甲酯体积分数、液气比和空气流量对含醋酸丁酯废气吸收率的影响.结果表明,醋酸丁酯质量浓度ρ =0.535 g/L,复合吸收剂中油酸甲酯体积分数φ=0.5,液气比1.25 L/m3,空气流量v=4 L/min时,废气中醋酸丁酯吸收率可达94.12%.采用普通精馏对含醋酸丁酯的吸收液进行后处理,塔顶回收所得醋酸丁酯质量分数可达99.0%以上,塔釜回收所得油酸甲酯-油酸乙酯复合溶剂对醋酸丁酯废气回收率达91.01%. 相似文献
15.
碘催化合成乙酸正丁酯的研究 总被引:1,自引:0,他引:1
本研究以I2作催化剂,正丁醇和HAc通过酯化反应合成了乙酸正丁酯.考察了最佳原料配比,催化剂用量和反应时间对反应的影响.合成的最佳条件是:酸醇物质的量比为1.5∶1.0,催化剂用量为醇物质的量的10(mol)%(催化剂I20.6g),反应时间为4.0h.在最佳条件下,乙酸正丁酯的产率可达67.52%. 相似文献
16.
为了探究正丁醇在浓硫酸的催化作用下与乙酸酐反应合成乙酸丁酯工艺的热危险性,采用差示扫描量热仪研究了正丁醇、乙酸酐和乙酸丁酯的热分解情况,并采用反应量热仪分别探究工艺温度、乙酸酐滴加速率和搅拌速率对合成反应放热的影响。结果表明,正丁醇、乙酸酐和乙酸丁酯升温扫描阶段均表现为吸热过程,起始温度依次为117.9,139.4,127.2℃。在工艺优化过程中,增加加料时间、升高工艺温度或增加搅拌速率,均能够降低反应在热失控条件下达到的最大温度和最大热累计度,增加反应的安全性以及提高反应热转化率。 相似文献
17.
18.
硫酸钛催化合成乙酸丁酯的研究 总被引:5,自引:0,他引:5
以硫酸钛为催化剂合成了乙酸丁酯,确定了酯化反应适宜条件。结果表明,当冰乙酸用量为0.10mol,丁醇用量为0.083mol,硫酸钛用量为1.4g,回流反应90min时,乙酸丁酯收率可达92.6%。 相似文献
19.
对甲苯磺酸催化合成乙酸丁酯的研究 总被引:15,自引:3,他引:15
研究了以对甲苯磺酸为催化剂 ,乙酸和正丁醇为原料合成乙酸丁酯 ,并考察了影响反应的因素。结果表明 ,醇酸摩尔比为 1 2∶1,催化剂用量为 0 8g(乙酸为 0 2mol的情况下 ) ,带水剂环己烷为 5ml,反应时间为 2 0h是最适宜的反应条件 ,酯化率达 96 9% 相似文献