首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于化工模拟软件Aspen Plus,选用苯甲醚为萃取剂,采用UNIFAC模型,对甲醇-苯共沸体系的连续萃取精馏过程进行模拟与条件优化。采用Sensitivity灵敏度分析考察了萃取精馏塔的的溶剂比(萃取剂对原料的物质的量比)、全塔理论板数、原料进料位置、萃取剂进料位置、回流比等因素对分离效果与热负荷的影响。确定的最佳工艺方案为:全塔理论板数为28,原料和萃取剂分别在第22块和第6块理论板进料,回流比为1,溶剂比为2。在此工艺方案下:产品甲醇和苯的纯度均达99.94%,萃取剂苯甲醚的回收率达99.99%,模拟与优化结果为甲醇-苯共沸物连续萃取精馏分离过程的工业化设计和操作提供了理论依据和设计参考。  相似文献   

2.
应用化工过程模拟软件Aspen Plus对丙酮-氯仿最低共沸物系的连续萃取精馏过程进行了模拟与优化。通过Aspen物性分析,筛选出合适的萃取剂为二甲基亚砜。确定了双塔连续萃取精馏的工艺流程,并利用灵敏度分析工具考察了萃取精馏塔的理论塔数、回流比、原料进料位置、萃取剂进料位置、溶剂比(萃取剂对原料的物质的量比)对分离效果的影响。确定的最佳工艺方案为:全塔理论板数为45,原料和萃取剂分别在第11块和第3块理论板进料,回流比为2.5,溶剂比为1.9。在此工艺条件下:萃取精馏塔塔顶丙酮的分离效果达99.95%,萃取剂回收塔塔顶氯仿的纯度达到98.34%;萃取剂二甲基亚砜的循环补充量为5.557mol/h。模拟与优化结果为丙酮-氯仿共沸物连续萃取精馏分离过程的设计和操作提供了参考。  相似文献   

3.
应用化工过程模拟软件Aspen Plus V7.3对甲醇-四氢呋喃最低共沸物系的连续萃取精馏过程进行了模拟与优化。通过Aspen物性分析,筛选出合适的萃取剂为二甲基亚砜。确定了双塔连续萃取精馏的工艺流程,并利用灵敏度分析工具考察了萃取精馏塔的理论塔数、原料进料位置、萃取剂进料位置、回流比、溶剂比(萃取剂对原料的物质的量比)对分离效果的影响。确定的最佳工艺方案为:全塔理论板数为32,原料和萃取剂分别在第26块和第4块理论板进料,回流比为3,溶剂比为1.9。在此工艺条件下:萃取精馏塔塔顶四氢呋喃的分离效果达99.98%,萃取剂回收塔塔顶甲醇的纯度达到99.96%;萃取剂二甲基亚砜的循环补充量为8.58 mol/h。模拟与优化结果为甲醇-四氢呋喃共沸物连续萃取精馏分离过程的设计和操作提供了参考。  相似文献   

4.
采用模拟软件Aspen Plus,以糠醛为萃取剂,对环己烷-苯共沸物体系的萃取精馏进行了模拟优化。利用灵敏度分析考察了萃取精馏塔的塔板数、萃取剂对原料的质量比(溶剂比)、萃取剂和原料的进料位置等因素对分离效果的影响。确定最优的工艺条件为:全塔理论板数为34,溶剂比为2.4,原料和萃取剂的进料位置分别为第30块板和第12块板。本研究为环己烷-苯萃取精馏过程的设计提供了参考。  相似文献   

5.
利用Aspen Plus流程模拟软件,模拟了以苯胺为萃取剂,萃取精馏分离苯-环己烷体系的工艺流程,考察了溶剂比、全塔理论塔板数、原料进料位置、萃取剂进料位置等因素对分离效果的影响。确定了最佳工艺操作参数为:萃取精馏塔的全塔理论板数为32,原料和萃取剂进料位置分别为第25块和第5块理论板,回流比为1.5,溶剂比为2.5。产品环己烷的纯度达到99.66%,苯的纯度达到99.66%,再生的萃取剂苯胺的纯度达到99.99%。  相似文献   

6.
孙畅  白鹏  梁金华  张鸾 《现代化工》2013,33(6):108-111
首次研究了间歇萃取精馏方法分离环己烷-正丙醇二元共沸物。通过溶剂选择原理选出DMF作为分离此共沸物系的溶剂,采用UNIFAC模型对常压下环己烷-正丙醇物系和加入溶剂DMF后的物系进行气液平衡模拟,并进行了实验验证,其中模拟结果与实验数据吻合较好。通过间歇萃取精馏分离此共沸物的实验研究来进一步考察所选萃取剂的效果。结果表明,DMF能够消除环己烷-正丙醇共沸物系的共沸点,采用有30块理论板的填料塔,萃取剂进料位置为第4块板,溶剂质量比为1∶1,回流比为3∶1时,塔顶环己烷产品质量分数为96.2%,回收率为72.2%。  相似文献   

7.
利用Aspen Plus对以DMSO为萃取剂的丙酮-环己烷共沸物系的萃取精馏进行了模拟研究。通过灵敏度分析工具,得到了丙酮-环己烷共沸物系的连续萃取精馏最优工艺条件:萃取精馏塔的理论板数36,质量回流比0.32,原料进料位置25,萃取剂进料位置7,萃取剂用量1 750 kg/h,溶剂回收塔的理论板数8,质量回流比0.21,进料位置5时,在最优工艺条件下,分离得到的环己烷质量分数可到99.5%,丙酮质量分数可到99.53%。同时通过间歇萃取精馏,对DMSO作为萃取剂的丙酮-环己烷萃取精馏进行试验验证,通过试验可以得到质量分数为95.35%的环己烷和质量分数为92.24%的丙酮,且二者回收率均可达65%以上,说明以DMSO为萃取剂,通过萃取精馏可以实现丙酮-环己烷共沸物系的有效分离。  相似文献   

8.
通过COSMO-RS软件计算,选择离子液体1-己基-3-甲基咪唑醋酸盐([HMIM]Ac)作为萃取精馏分离苯-异丙醇的共沸物合适的萃取剂。采用Aspen Plus流程模拟软件模拟苯-异丙醇共沸体系的连续萃取精馏过程。对两塔连续萃取精馏工艺过程,使用灵敏度分析工具优化,得出当回流比为1. 4、溶剂比为0. 365时,产品苯的纯度为99. 99%,异丙醇的纯度为99. 99%。此结果可为苯-异丙醇共沸体系的萃取精馏过程工艺设计提供理论基础。  相似文献   

9.
基于Aspen Plus软件,对二异丙醚-异丙醇共沸体系的萃取精馏过程进行模拟与条件优化。采用Sensitivity灵敏度分析考察了多个因素对分离效果与热负荷的影响。确定的最佳工艺方案为:萃取精馏塔全塔理论板数15块、原料进料位置为第5块、萃取剂进料位置为第2块、回流比为0.5、溶剂比为0.18。  相似文献   

10.
以离子液体1-乙基-3-甲基咪唑醋酸盐([Emim]AC)为萃取剂,萃取精馏分离乙酸甲酯和甲醇共沸体系。采用Aspen Plus流程模拟软件,对萃取精馏工艺进行了模拟和优化。考察了溶剂比、全塔理论塔板数、原料进料位置、萃取剂进料位置和回流比等工艺参数对分离效果的影响。萃取精馏塔的最佳工艺参数为:全塔理论板数30,原料和萃取剂进料位置分别为第23块和第2块理论板,回流比为1.0,溶剂比为0.7。闪蒸罐操作温度和压力分别为85℃和20 kPa。在最优工艺条件下,产品乙酸甲酯的质量分数达到99.95%,甲醇的质量分数达到99.54%,均满足分离要求。说明采用离子液体[Emim]AC作为萃取剂分离乙酸甲酯和甲醇共沸物具有工业应用前景。  相似文献   

11.
采用COSMO-RS中的COSMOtherm软件,选定三丁基甲基醋酸铵([N_(1,4,4,4)][OAc])作为萃取精馏分离苯和乙醇共沸体系的萃取剂。采用Aspen Plus流程模拟软件,对苯和乙醇体系的萃取精馏过程进行了模拟。考察了溶剂比、全塔理论板数、回流比、原料进料位置等因素对分离效果的影响,通过灵敏度分析,得到了萃取精馏分离乙醇和苯体系的最佳工艺优化条件。在此条件下,产品苯的摩尔分数为99. 99%,乙醇的摩尔分数为99. 98%。说明以[N_(1,4,4,4)][OAc]为萃取剂萃取分离乙醇和苯的共沸物具有很好的效果。  相似文献   

12.
冷辰  辛华  王鸿佳  曲颖  张志刚 《山东化工》2022,(2):17-19,22
使用Aspen Plus过程模拟软件,模拟了离子液体1-烯丙基-3-甲基咪唑氯盐([AMIM] Cl)作为萃取剂,萃取精馏分离丙酮和甲醇共沸物的过程.分析了全塔理论板数、原料进料位置、回流比、塔顶产品产出量等因素对分离丙酮和甲醇共沸物分离效果的影响.获得的最佳工艺条件为:萃取精馏塔的全塔理论板为27块,原料进料位置为第...  相似文献   

13.
以离子液体1,3-二甲基咪唑磷酸二甲酯盐([DMIM]DMP)为萃取剂,分离乙醇和2-丁酮共沸体系。采用Aspen Plus流程模拟软件,对乙醇和2-丁酮体系的萃取精馏过程进行了模拟。考察了溶剂比、全塔理论塔板数、原料进料位置、萃取剂进料位置和回流比等因素对分离效果的影响,获得了萃取精馏分离乙醇和2-丁酮体系的最佳工艺优化条件为:萃取精馏塔的全塔理论板数为22,原料和萃取剂进料位置分别为第11块和第3块理论板,回流比为0.5,溶剂比为0.5。在此条件下,产品2-丁酮的摩尔分数达到99.98%,乙醇的摩尔分数达到99.99%,再生的萃取剂[DMIM]DMP的摩尔分数达到100%。说明以[DMIM]DMP为萃取剂萃取分离乙醇和2-丁酮共沸物具有很好的效果。  相似文献   

14.
以糠醛作为萃取剂分别使用常规萃取精馏、隔壁塔萃取精馏和差压热集成萃取精馏对苯和环己烷体系进行分离研究,使用流程模拟软件Aspen Plus V8.4进行模拟分析,对初步设计的三稳态流程,分别进行灵敏度分析,使用多目标遗传算法对过程进行整体优化以获得最优结构参数。结果表明,隔壁塔萃取精馏和差压热集成萃取精馏相对于常规萃取精馏所需再沸器热负荷可分别减小21.5%和15.7%。对三工艺流程进行经济性分析,发现与常规流程相比,隔壁塔萃取精馏的年总费用下降了6.0%,而差压热集成萃取精馏年总费用增加了50.8%,为萃取精馏分离苯/环己烷共沸体系工业化设计提供了理论依据和设计参考。  相似文献   

15.
辛华  冷辰  王鸿佳  曲颖  张志刚 《山东化工》2022,51(1):210-212,220
使用Aspen Plus过程模拟软件,模拟了离子液体1-甲基-3-甲基咪唑磷酸二甲酯([MMIM][DMP])作为萃取剂,萃取精馏分离丙酮和甲醇共沸物的过程.分析了全塔理论板数、原料进料位置、回流比、塔顶产品产出量等因素对分离丙酮和甲醇共沸物分离效果的影响.获得的最佳工艺条件为:萃取精馏塔的全塔理论板为40块,原料进料...  相似文献   

16.
采用萃取精馏工艺对甲醇和丙酸甲酯二元共沸物进行分离,筛选出以苯酚为萃取剂,借助Aspen Plus软件对该过程进行模拟研究,通过单因素优化详细考察了两塔的理论板数、进料位置、回流比以及溶剂比等工艺参数对塔顶产品质量分数和再沸器能耗的影响,确定了较优的工艺参数:萃取精馏塔理论板数32块,待分离原料进料位置第16块,萃取剂进料位置第6块,回流比为1.4,溶剂比为1.3,塔顶甲醇产品质量分数为99.9%;溶剂回收塔理论塔板数24,进料位置第6块,回流比为1.3,塔顶丙酸甲酯产品质量分数为99.9%。在上述模拟优化基础上,进一步通过实验验证了萃取精馏工艺的可行性。最后对某公司5 600 t/a的丙酸甲酯和甲醇混合液进行工程设计,为该二元共沸物的分离提供依据。  相似文献   

17.
文章对异丙醇-水共沸体系的连续萃取精馏工艺进行模拟与优化。通过绘制拟二元汽液平衡相图,筛选出合适的萃取剂为三甘醇。确定了双塔连续萃取精馏的工艺流程。结果表明,对于处理流量100 kmol/h的异丙醇-水共沸溶液,精馏塔具有23块塔板时,原料进料位置在第15块塔板,萃取液进料位置在第3块塔板,摩尔回流比为2,溶剂比(萃取剂对原料的摩尔比)为1.2,异丙醇的分离效果达99.92%,萃取剂三甘醇的回收率达99.99%。模拟和优化的结果对工业化设计和生产提供了理论依据。  相似文献   

18.
利用化工流程模拟软件Aspen Plus,以DMSO为萃取剂,模拟研究四氢呋喃-水共沸物的分隔壁萃取精馏和单塔侧线采出萃取精馏过程。分隔壁萃取精馏优化后工艺参数为:主塔22块理论板,萃取剂3块理论板处进料,原料17块理论板处进料,回流比0.5,溶剂比0.45;副塔10块理论板,回流比2.4。可得到摩尔分数为99.90%的四氢呋喃和99.19%的水,回收萃取剂的摩尔分数为99.72%。和常规双塔萃取精馏相比,冷凝器热负荷降低18.63%,再沸器热负荷降低15.58%,实现了有效节能。而单塔侧线采出萃取精馏不能实现四氢呋喃和水的有效分离。  相似文献   

19.
利用化工流程模拟软件Aspen Plus对异丙醇-环己烷共沸物系的双塔连续萃取精馏过程进行了模拟计算与优化。首先根据溶剂相似相溶原理,先初选出糠醛和硝基苯作为备选溶剂,再通过汽液平衡试验及ChemCAD模拟筛选,确定糠醛为最适宜溶剂,选择NRTL模型作为物性方法,使用RadFrac模块进行模拟计算,并利用灵敏度分析模块对各工艺参数进行优化。结果表明,最适宜工艺方案为:萃取精馏塔理论塔板数为30,原料在第26块板进料,溶剂在第12块板进料,物质的量回流比为1.8,溶剂质量比为3∶1;溶剂回收塔理论板数为15,进料位置在第10块板,物质的量回流比为1.0。分离效果可达到环己烷质量分数为99.74%,异丙醇质量分数为99.61%。模拟和优化结果为分离过程的优化操作和设计提供了依据。  相似文献   

20.
采用萃取精馏的方法分离乙腈-正丙醇的共沸物系。首先利用溶剂选择原理和UNIFAC基团贡献法选出N-甲基吡咯烷酮作为萃取精馏的萃取剂,同时采用NRTL模型对常压下乙腈-正丙醇物系和加入萃取剂N-甲基吡咯烷酮后的汽液平衡进行模拟和实验验证,模拟结果与实验数据吻合较好。然后通过间歇萃取精馏实验进一步考察所选萃取剂的分离效果。结果表明,N-甲基吡咯烷酮能够打破共沸,有效分离乙腈-正丙醇共沸物系。采用有28块理论板的填料塔,萃取剂进料位置为第4块板,溶剂比为1.0,回流比为3,可以从塔顶得到质量分数为98.6%的乙腈产品。最后,用Aspen Plus软件对乙腈-正丙醇物系的连续萃取精馏流程进行了模拟,得出的参数为进一步的工业应用奠定基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号