首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用天然硅酸盐矿物材料高岭土对染料废水亚甲基蓝进行吸附去除研究,采用平衡吸附法研究不同高岭土投加量、溶液初始pH条件下高岭土对亚甲基蓝吸附去除的影响,进一步考察了热力学和动力学吸附规律,确定最佳的试验条件。结果表明:高岭土最佳投加量选择0.8 g/L,对亚甲基蓝的吸附量随初始pH的升高而增加;热力学研究表明,Koble-Corrigan模型对吸附过程的拟合度最高,更适合高岭土对亚甲基蓝的吸附行为,吸附过程是一个自发吸热的过程;动力学研究表明,在60min时基本达到吸附平衡,吸附过程符合准二级动力学的吸附模型。  相似文献   

2.
3.
活性炭吸附法处理亚甲基蓝废水的研究   总被引:1,自引:0,他引:1  
研究了活性炭对水溶液中亚甲基蓝的吸附,通过实验得到了25℃及30℃活性炭吸附亚甲基蓝的吸附平衡数据,从吸附等温线可看出亚甲基蓝水溶液吸附符合Langmuir型。以及在等温吸附条件下,通过改变不同的参数,分别测定了亚甲基蓝废水吸附过程的穿透曲线。  相似文献   

4.
以壳聚糖包覆介孔-微孔复合分子筛(CS/MCM-41-A)为吸附剂去除水中的亚甲基蓝,研究了反应时间、溶液pH、溶液亚甲基蓝初始浓度、CS/MCM-41-A投加量、竞争离子对吸附的影响,分析了CS/MCM-41-A的吸附动力学和热力学特征。结果表明,25℃下,当CS/MCM-41-A投加量为0.3 g/L,溶液亚甲基蓝初始浓度100 mg/L,pH为6,吸附时间为40 min时,溶液中亚甲基蓝的去除率达到92.57%。CS/MCM-41-A吸附亚甲基蓝符合拟二级动力学方程,吸附等温线更好地符合Langmuir方程,CS/MCM-41-A对亚甲基蓝的有良好的吸附性能。  相似文献   

5.
以茶叶渣为原料,采用单因素方法借助静态吸附实验对模拟印染废水中亚甲基蓝的吸附处理过程进行了相关研究。考察了溶液pH值、亚甲基蓝浓度、茶叶渣投加量、吸附处理时间和温度对处理效果的影响。实验结果表明:在最佳工艺条件下(溶液pH值为6、亚甲基蓝浓度为200 mg/L、茶叶渣投加量为2 g/L、吸附时间为150 min、吸附温度为35℃),茶叶渣对亚甲基蓝的吸附去除率和吸附量分别达到95.40%和85.11 mg/g。  相似文献   

6.
《广东化工》2021,48(16)
如何高效且低成本处理染料废水成了人们关注的重点。本文将综合分析传统生物质吸附剂、改性生物质吸附剂、生物质炭吸附剂吸附水中亚甲基蓝的实验,目的是模拟不同的生物质吸附剂处理印染废水的性能。结果显示不同种类的生物质吸附剂吸附水中亚甲基蓝的能力各不相同,对不同的生物质吸附剂进行改性可以使其吸附能力有不同程度的提高  相似文献   

7.
为了开发更多的粉煤灰用途,采用粉煤灰去除水中的染料污染物,达到以废治废的目的。采用超声波辅助粉煤灰的方法,以亚甲基蓝染料作为模拟污染物,考察此工艺的可行性,讨论亚甲基蓝的去除效果,分析其动力学。研究结果证明,超声波-粉煤灰联合体系(US-FA体系)具有良好的去除染料污染物的能力,超声波的引入能提高粉煤灰对染料污染物的去除率,协同效应非常明显,粉煤灰投加量0.3、0.5、1.0和2.0 g的情况下,协同因子分别达到1.05、1.32、1.55和2.27。在本实验体系内,经过恒温控制后,超声波的热效应可以忽略,主要通过粉煤灰吸附和羟基自由基降解两大主要途径去除污染物,超声波对去除性能的促进作用主要体现在以下几个方面:一是超声波空化作用产生羟基自由基,超声波和粉煤灰表面相互作用产生更多的羟基自由基;二是超声波能促进粉煤灰表面产生更多的活性位,促进了吸附过程的化学反应步骤,由于粉煤灰对亚甲基蓝的吸附过程以化学反应为控制步骤,所以超声波能大为促进粉煤灰的吸附性能;三是超声波的引入加剧了固液混合,促进污染物向固相表面移动,促进更多的污染物进入到吸附剂颗粒内部,改善了传质。  相似文献   

8.
陈岚  权宇珩  李志勇  岳鹏飞 《化工学报》2019,70(7):2708-2716
为了开发更多的粉煤灰用途,采用粉煤灰去除水中的染料污染物,达到以废治废的目的。采用超声波辅助粉煤灰的方法,以亚甲基蓝染料作为模拟污染物,考察此工艺的可行性,讨论亚甲基蓝的去除效果,分析其动力学。研究结果证明,超声波-粉煤灰联合体系(US-FA体系)具有良好的去除染料污染物的能力,超声波的引入能提高粉煤灰对染料污染物的去除率,协同效应非常明显,粉煤灰投加量0.3、0.5、1.0和2.0 g的情况下,协同因子分别达到1.05、1.32、1.55和2.27。在本实验体系内,经过恒温控制后,超声波的热效应可以忽略,主要通过粉煤灰吸附和羟基自由基降解两大主要途径去除污染物,超声波对去除性能的促进作用主要体现在以下几个方面:一是超声波空化作用产生羟基自由基,超声波和粉煤灰表面相互作用产生更多的羟基自由基;二是超声波能促进粉煤灰表面产生更多的活性位,促进了吸附过程的化学反应步骤,由于粉煤灰对亚甲基蓝的吸附过程以化学反应为控制步骤,所以超声波能大为促进粉煤灰的吸附性能;三是超声波的引入加剧了固液混合,促进污染物向固相表面移动,促进更多的污染物进入到吸附剂颗粒内部,改善了传质。  相似文献   

9.
《化学工程》2016,(1):28-32
以活性炭为吸附剂,亚甲基蓝(MB)为吸附质,考察了吸附剂用量、吸附时间、温度对活性炭去除亚甲基蓝的影响。分别采用伪一级、伪二级动力学模型和Langmuir,Freundlich吸附等温线模型对吸附动力学和等温线进行分析。实验表明,在活性炭用量为0.667 g/L,吸附时间为360 min,反应温度为298 K时,活性炭对亚甲基蓝的最大吸附量为249.081 mg/g。吸附反应在前30 min内速率很快,并约在360 min内达到吸附平衡,吸附动力学符合伪二级动力学模型。吸附反应为放热反应,等温吸附过程符合Langmuir和Freundlich吸附等温模型,相关系数高于0.99。活性炭对去除水中亚甲基蓝效果好,是一种优良的吸附剂。  相似文献   

10.
鸡蛋壳对废水中亚甲基蓝的吸附性能研究   总被引:1,自引:0,他引:1  
以废弃的鸡蛋壳为吸附剂,研究了其对亚甲基蓝的吸附作用,利用红外光谱对吸附前后的鸡蛋壳进行了表征。考察了溶液初始浓度、吸附温度、溶液p H、吸附时间对废水中亚甲基蓝吸附性能的影响。由此得出了鸡蛋壳对亚甲基蓝的最佳吸附条件。通过动力学模型、等温线方程对吸附实验数据进行了非线性拟合,结果表明,鸡蛋壳吸附亚甲基蓝等温线能较好较符合拟二级动力学模型,吸附过程为物理吸附;吸附过程较符合Freundlich方程,吸附过程为多层吸附;热力学参数分析结果显示该鸡蛋壳对亚甲基蓝吸附为自发、熵减小、放热过程。  相似文献   

11.
《云南化工》2017,(4):22-28
以山竹壳为原料,采用磷酸—硫酸活化法制备了比表面积为1730m~2·g~(-1)的活性炭。研究了山竹壳活性炭吸附亚甲基蓝的吸附性能,考察了亚甲基蓝溶液的pH、不同初始浓度、吸附时间、温度等条件对吸附效果的影响。应用准一级动力学方程、准二级动力学方程模拟了山竹壳活性炭吸附亚甲基蓝的动力学过程,结果表明准二级动力学方程适合描述整个吸附过程。用Langmuir和Freundlich模型模拟吸附等温线,Langmuir方程更适合描述此吸附过程,在298K下最大单层吸附量为526.31mg·g~(-1)。计算了吉布斯自由能(ΔG~0)、焓变(ΔH~0)、熵变(ΔS~0)等热力学参数,ΔG~0、ΔH~0、ΔS~0均小于0,说明此吸附过程是一个自发进行的、放热的、趋于有序的吸附过程。  相似文献   

12.
吸附法处理亚甲基蓝研究   总被引:6,自引:2,他引:4  
处理亚甲基蓝的方法很多,吸附法是其中之一。吸附法属于物理化学法,具有操作简单、费用低、处理效果较好等优点,历来受到研究者和使用者的重视。重点介绍了近年来采用吸附法处理亚甲基蓝的研究进展,特别是新型吸附剂以及吸附动力学与热力学等领域的研究进展。结果表明,吸附法处理亚甲基蓝有一定优势,在应用中要根据废水实际情况和生产状况选择最佳处理和回收工艺。  相似文献   

13.
活性炭纤维对水中亚甲基蓝的吸附脱色研究   总被引:1,自引:0,他引:1  
研究了活性炭纤维(ACF)对水中亚甲基蓝的吸附脱色试验。温度为15-20℃,滤速为4mL/min时。浓度为10mg/L的亚甲基蓝脱色率达98%以上。活性炭纤维经20次吸附与解吸实验,吸附脱色性能没有明显降低。与颗粒状活性炭(GAC)相比,活性炭纤维吸附脱色亚甲基蓝的速度快,在短时间内,就能达到吸附平衡。  相似文献   

14.
活性炭纤维对水中亚甲基蓝的吸附脱色研究   总被引:3,自引:2,他引:3  
研究了活性炭纤维(ACF)对水中亚甲基蓝的吸附脱色试验,温度为15-20℃,滤速为4mL/min时,浓度为10mg/L的亚甲基蓝脱色率达98%以上。活性炭纤维经20次吸附与解吸实验,吸附脱色性能没有明显降低。与颗粒状活性炭(GAC)相比,活性炭纤维吸附脱色亚甲基蓝的速度快,在短时间内,就能达到吸附平衡。  相似文献   

15.
气体膨胀液体处理松针落叶对水体中亚甲基蓝的吸附研究   总被引:2,自引:0,他引:2  
探讨了高压气体膨胀液体(GXLs)提取松针落叶有效成分后的残渣作为生物质吸附剂对废水中亚甲基蓝(MB)的吸附性能。研究了吸附时间、温度和盐离子浓度等实验条件对吸附行为的影响;用Langmuir和Freundlich等温吸附模型对吸附平衡数据进行非线性回归评价分析。结果表明:Langmuir和Freundlich方程对MB吸附实验数据拟合良好;吸附动力学曲线符合伪二级动力学反应模型。热力学研究表明,吸附过程符合Langmuir吸附等温式,是以化学吸附为主的、吸热的自发过程;313K时,最大饱和吸附量为120.51mg·g-1。因此,GXLs处理后的松针残渣对MB具有良好的吸附性能,可以作为阳离子染料废水处理用的生物质吸附剂。  相似文献   

16.
冯倩  徐荣声  李梅  张海永 《无机盐工业》2021,53(12):122-128
含有亚甲基蓝(MB)的废液直接排放会造成严重的水体污染。为研究生物质活性炭对MB的吸附性能,以农业废弃物向日葵为原料、磷酸(H3PO4)为活化剂,制备粉状活性炭(PAC)和块状活性炭(BAC),并研究PAC对MB的吸附性能。利用比表面积测试(BET)、X射线光电子能谱(XPS)、X射线衍射(XRD)、红外光谱(FT-IR)和扫描电镜(SEM)等方法解析活性炭的孔结构和表面特性。结果表明:活性炭前驱体的形状对活性炭的微观结构有较大的影响。PAC比BAC具有更大的比表面积(分别为701.95 m2/g和566.49 m2/g)和总孔体积(分别为2.23 cm3/g和1.04 cm3/g);PAC和BAC的平均孔径分别为7.31 nm和12.66 nm,均具有介孔材料的结构特性。两种活性炭表面均分布着丰富的含氧官能团和大量疏松的无定形碳,而存在的偏磷酸盐对孔隙起到支撑作用,这为MB的吸附提供了更多的活性位点和吸附通道。在25 ℃、pH为8、PAC用量为50 mg条件下,PAC对100 mL质量浓度为200 mg/L的MB溶液的吸附效果最好,吸附率达到72.2%。吸附过程符合伪二级动力学模型、颗粒内扩散模型和Langmuir等温吸附模型。  相似文献   

17.
石英砂负载氧化铁吸附去除溶液中亚甲蓝的研究   总被引:1,自引:0,他引:1  
以石英砂为原料制得石英砂负载氧化铁(IOCS),考察了IOCS的性能、吸附条件对IOCS吸附亚甲蓝效果的影响及吸附柱的再生,并对吸附过程进行了动力学研究。结果表明,采用高温烧结法制备的IOCS吸附亚甲蓝效果较好;IOCS对溶液中亚甲蓝吸附的适宜条件:pH为13.5,亚甲蓝质量浓度约为6 mg/L,温度为293 K,上样液吸附流速为4 BV/h;IOCS对溶液中亚甲蓝的吸附动力学曲线可以用Weber-Morris曲线来拟合;Langmuir吸附等温方程和Freundlich方程都能较好地描述IOCS对溶液中亚甲蓝的吸附过程;0.01 mol/L的HCl对IOCS吸附柱的再生效果较好。  相似文献   

18.
以茶渣作为原料,采用氢氧化钾活化法制备茶渣活性炭,探究了活性炭在不同条件下对亚甲基蓝的吸附性能。结果表明,茶渣活性炭具有多孔结构,表面含有含氧官能团,其比表面积为2 414 m2/g。将此活性炭应用于吸附亚甲基蓝,在40 mL浓度为200 mg/L的亚甲基蓝溶液中,活性炭添加量为4 mg,活性炭对亚甲基蓝的吸附量为1 488 mg/g。活性炭吸附亚甲基蓝的吸附模型符合Langmuir模型,动力学符合准二级动力学模型。茶渣活性炭对染料污染物有优异的吸附效果,在染料废水治理中有很大的应用前景。  相似文献   

19.
以茶渣作为原料,采用氢氧化钾活化法制备茶渣活性炭,探究了活性炭在不同条件下对亚甲基蓝的吸附性能。结果表明,茶渣活性炭具有多孔结构,表面含有含氧官能团,其比表面积为2 414 m~2/g。将此活性炭应用于吸附亚甲基蓝,在40 mL浓度为200 mg/L的亚甲基蓝溶液中,活性炭添加量为4 mg,活性炭对亚甲基蓝的吸附量为1 488 mg/g。活性炭吸附亚甲基蓝的吸附模型符合Langmuir模型,动力学符合准二级动力学模型。茶渣活性炭对染料污染物有优异的吸附效果,在染料废水治理中有很大的应用前景。  相似文献   

20.
磁性响应茶渣制备及其对水溶液中亚甲基蓝的吸附   总被引:2,自引:0,他引:2       下载免费PDF全文
采用化学共沉淀技术制备了茶渣(TW)/纳米Fe3O4磁性复合材料(magnetic tea waste,MTW),用扫描电镜(SEM)、X射线光电子能谱仪(XPS)、傅里叶变换红外光谱仪(FTIR)、X射线粉末衍射仪(XRD)和比表面积测定仪(BET)对其结构进行了表征,并考察了其对水溶液中亚甲基蓝(methylene blue,MB)的吸附性能。结果表明,MTW磁性响应明显,其表面可见有颗粒状物质堆积。MTW对MB吸附量随Fe3O4负载量增加而先增大后减小,并在负载量为23.16%时达到最大,此时MTW表面Fe元素的原子分数为5.24%,比表面积比TW增大85.71%,孔容积增大1倍。在303K下其对MB的Langmuir最大吸附量为160.5mg/g,比TW提高了9.93%,并具有良好的再生与循环使用性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号