首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
共沉淀法制备钇铝石榴石(YAG)纳米粉体   总被引:25,自引:4,他引:25  
透明YAG陶瓷具有较好的化学稳定性、光学性能和高温性能,很可能成为有竞争力的用来替代单晶的激光材料。纳米YAG撤体的合成有利于制备性能优异的YAG透明陶瓷。通过在NH4HCO3溶液中滴加NH4Al(SO4)2和Y(NO3)3的混合溶液,共沉淀生成YAG的碳酸盐前驱体;并采用IR,TG/DTA,XRD和SEM等测试手段对YAG前驱体进行表征。对YAG前驱体在不同温度下进行灼烧,结果发现,在1000℃左右已完全转变成YAG相,最终获得单分散、无团聚、形状规则的YAG纳米粉体。  相似文献   

2.
谢志鹏  薄铁柱 《佛山陶瓷》2011,21(1):21-24,25-26
钇铝石榴石(YAG)激光透明陶瓷由于具有单晶、玻璃激光材料无可比拟的优势而成为研究热点,并得到迅速发展,高性能的稀土元素掺杂YAG透明激光陶瓷被相继报导.本文综述了近年来国内外关于YAG激光透明陶瓷的最新研究成果.主要包括YAG微细粉体合成、烧结添加刺及多晶YAG透明陶瓷的致密化烧结技术,并对比了YAG透明陶瓷相对于Y...  相似文献   

3.
钇铝石榴石透明激光陶瓷的研究进展   总被引:13,自引:3,他引:10  
李霞  刘宏  王继扬  崔洪梅  张旭东 《硅酸盐学报》2004,32(4):485-489,506
透明钇铝石榴石(aluminum-yttrium garnet,YAG)陶瓷具有良好的化学稳定性和光学性能,是一种很有前途的单晶激光材料的替代物。同单晶相比,多晶YAG陶瓷具有许多优点,如:大尺寸材料易于制备,成本低适合大规模生产等。此外,因掺杂浓度高可得到较大的输出功率。对透明YAG激光陶瓷的光学特性以及制备工艺做了重点介绍,并对研究进展进行综合评述。最后,展望该领域的发展前景及今后的研究趋势。  相似文献   

4.
溶胶-凝胶法制备多晶钇铝石榴石纤维   总被引:1,自引:0,他引:1  
以廉价的铝粉、工业盐酸和醋酸钇为主要原料,通过溶胶-凝胶法制各了高性能的多晶钇铝石榴石纤维.采用X射线衍射、Fourier变换红外光谱、扫描电镜和热重-差示扫描热分析等表征了不同温度下焙烧所得纤维的物相组成、纤维形貌以及前驱体纤维的热分解特性.结果表明:纤维经热处理到900℃时可获得纯相的钇铝石榴石晶体.经1550℃热处理后,所得到的多晶钇铝石榴石纤维的平均晶粒尺寸在200 nm左右,拉伸强度在485MPa.  相似文献   

5.
钇铝石榴石长纤维制备研究   总被引:1,自引:0,他引:1  
本文以氯化铝、金属铝粉、氧化钇、冰醋酸为原料,采用溶胶-凝胶法制备了钇铝石榴石纤维。研究了纺丝助剂的不同种类对前驱体凝胶纤维长度的影响。结果表明,以聚乙烯吡咯烷酮为纺丝助剂,得到的凝胶纤维长度最长,达25cm。凝胶纤维在1000℃煅烧2小时,全部结晶为钇铝石榴石,纤维的直径为15~18μm,表面光滑。  相似文献   

6.
钇铝石榴石纤维的应用与制备   总被引:1,自引:0,他引:1  
钇铝石榴石纤维具有抗氧化、耐高温、抗高温蠕变等特点,可作为高温耐火材料,也可作为高温复合材料的增强材料。本文对钇铝石榴石的晶体结构、应用和制备方法进行了介绍,并展望了钇铝石榴石纤维的发展趋势。  相似文献   

7.
采用溶胶-凝胶燃烧法,制备了钕镱共掺钇铝石榴石(Nd3+/Yb3+:YAG)透明陶瓷纳米粉体,并用热分析、X射线衍射、红外光谱、透射电镜、吸收及荧光光谱等测试方法对其结构、形貌及性能进行分析.结果表明:经900℃煅烧,Nd3+/YB3+:YAG透明陶瓷的质量损失为49.56%,所得到的Nd3+:Yb3+:YAG纳米粉体结晶好,烧结性好,纯度较高,形状规则,粒径均匀,均在60~100衄之间.在808 nm处具有较强的吸收带,对应于Nd离子4I9/2-4F7/2跃迁,有利于对808nm激光二级管泵浦光的吸收.在1064nm处,Nd3+/Yb3+:YAG的发射峰要强于Nd3+:YAG,说明在Nd3+/Yb3+:YAG中,通过[(4F3/2)Nd),(2F7/2)Yb]→[(4I9/2)nd,(2F5/2)Yb]离子问的交叉弛豫,产生了有效的Yb3+到Nd3+的能量转移,从而实现激光的高效输出.  相似文献   

8.
以廉价的铝粉、工业盐酸和醋酸钇为主要原料,通过溶胶–凝胶法制备了高性能的多晶钇铝石榴石纤维。采用X射线衍射、Fourier变换红外光谱、扫描电镜和热重–差示扫描热分析等表征了不同温度下焙烧所得纤维的物相组成、纤维形貌以及前驱体纤维的热分解特性。结果表明:纤维经热处理到900℃时可获得纯相的钇铝石榴石晶体。经1550℃热处理后,所得到的多晶钇铝石榴石纤维的平均晶粒尺寸在200nm左右,拉伸强度在485MPa。  相似文献   

9.
叙述了钇铝石榴石透明陶瓷的主要生产工艺:粉末制备、添加剂的引入、成形与烧成,并列出了它的主要性能。  相似文献   

10.
用激光加热基座法(LHPG)从粉末直接生长单晶光纤并对光谱作了研究。结果表明:LHPG法生长出来的单晶光纤可替代大块晶体去研究光谱等性能;Ca^2+和Zr^4+等量同时掺入到Nd:YAG晶体中,其吸收谱与Nd:YAG基本相同,但荧光分支比和荧光衰减规律发生显著变化。此外还探讨了Ca^2+,Zr^4+影响的原因。  相似文献   

11.
A carbonate precursor of yttrium aluminum garnet (YAG) with an approximate composition of NH4AlY0.6(CO3)1.9(OH)2·0.9H2O was synthesized via a coprecipitation method from a mixed solution of ammonium aluminum sulfate and yttrium nitrate, using ammonium hydrogen carbonate as the precipitant. The precursor precipitate was characterized using chemical analysis, differential thermal analysis/thermogravimetry, X-ray diffractometry, and scanning electron microscopy. The sinterability of the YAG powders was evaluated by sintering at a constant rate of heating in air and vacuum sintering. The results showed that the precursor completely transforms to YAG at ∼1000°C via the formation of a yttrium aluminate perovskite (YAP) phase. YAG powders obtained by calcining the precursor at temperatures of ≤1200°C were highly sinterable and could be densified to transparency under vacuum at 1700°C in 1 h without additives.  相似文献   

12.
Coatings of yttrium aluminum garnet (Y3Al5O12, YAG), which is a promising high-temperature ceramic, were developed for the first time using a novel precursor plasma spraying (PPS) technique. The precursor sol was sprayed using a radio-frequency induction plasma technique. X-ray diffraction analysis of the as-sprayed coatings confirmed that a metastable hexagonal yttrium aluminate (H-YAlO3) was the major phase. The above-described specimen, on further treatment with plasma, was converted to cubic garnet (YAG) as the major phase, with a minor amount of orthorhombic YAlO3 (O-YAP) phase. 27Al magic-angle spinning nuclear magnetic resonance of the YAG coating corroborated the X-ray results and confirmed the presence of YAG and O-YAP phases. Formation of the garnet phase through the PPS technique is proof that the chemistry can be controlled in the plasma. This finding opens up new avenues for developing complex functional oxide deposits.  相似文献   

13.
Grain boundary grooving experiments were conducted with Σ5 (210) twist boundaries in Y3Al5O12 (YAG) with the goal of extracting information on diffusion in YAG. Planar boundaries oriented 90° to the surface were annealed in air at various times and temperatures. Atomic force microscopy was used to characterize the subsequent grooves. The Mullins approach leads to the following expression for the diffusion coefficient: D (m2/s) = 3.9 × 10−10 exp[−330 ± 75 (kJ/mol)/ RT ]. The relatively low activation energy agrees well with earlier oxygen tracer diffusion measurements on YAG, suggesting that oxygen is the limiting diffusing species in boundary grooving of YAG.  相似文献   

14.
The effects of incorporating yttrium aluminum garnet (YAG) into a porous alumina matrix reinforced with Nextel 610 alumina fibers were investigated. Composites with various amounts of YAG added to the matrix were prepared to determine its effect on retained tensile strengths after heating to 1100° and 1200°C. Strengths of YAG-containing composites were slightly lower than those of an all-alumina-matrix composite after heating for 5 h to 1100°C. However, after heating for 5 or 100 h at 1200°C, all the YAG-containing composites displayed greater strengths and greater strains to failure than the all-alumina composite. At the higher temperature, the presence of YAG is believed to inhibit the densification of the matrix, which helps to maintain higher levels of porosity and weaker interparticle bonding that allows for crack-energy dissipation within the matrix. A reduction in grain growth of the fibers by the presence of segregated Y was also observed, which may also contribute to higher fiber strength, thereby increasing the retained strengths of the YAG-containing composites.  相似文献   

15.
The lattice and grain-boundary diffusion coefficients of ytterbium, which substitutes for yttrium, have been determined in high-purity, stoichiometric yttrium aluminum garnet (YAG) polycrystals in the temperature range 1400°–1550°C, in air. Ytterbium oxide thin films were produced on the YAG surfaces by a dipping method. After diffusion treatments, the penetration profiles were established by secondary ion mass spectroscopy, and the diffusion coefficients were calculated from the thin-film solution of Fick's equation. The difference between the volume and grain-boundary diffusion coefficients is ∼5 orders of magnitude in the temperature range studied. The cation activation energies (∼550 kJ/mol) are much larger than those for oxygen (∼300–350 kJ/mol). The effective diffusion coefficient deduced from high-temperature deformation data reported in the literature for YAG polycrystals, assuming grain-boundary sliding accommodated by volume diffusion, is in excellent agreement, both in magnitude and activation energy, with the cation diffusion data.  相似文献   

16.
A porous oxide fiber coating was investigated for Nextel 610 fibers in an alumina matrix. Polymeric-solution-derived yttrium aluminum garnet (YAG, Y3Al5O12) with a fugitive carbon phase was used to develop the porous fiber coating. Ultimate tensile strengths of tows and minicomposites following heat treatments in argon and/or air were used to evaluate the effect of the porous fiber coating. The porous YAG fiber coatings did not reduce the strength of the tows when heated in argon, and they degraded tow strength by only ∼20% after heating in air at 1200°C for 100 h. Minicomposites containing porous YAG-coated fibers were nearly twice as strong as those containing uncoated fibers. However, after heating at 1200°C for 100 h, the porous YAG coatings densified to >90%, at which point they were ineffective at protecting the fibers, resulting in identical strengths for minicomposites with and without a fiber coating.  相似文献   

17.
Nanocrystalline yttrium aluminum garnet (YAG, Y3Al5O12) was synthesized by pyrolysis of complex compounds of aluminum and yttrium with triethanolamine [(HOCH2CH2)3N, (TEA)]. Loose and porous precursor was obtained on complete dehydration of the metal ion–triethanolamine complexes. Pure YAG powder was obtained by calcination of the precursor at 950°C. The precursor was characterized by simultaneous thermogravimetry, differential scanning calorimetry, and mass spectra analyses (TG–DSC–MS). The heat-treated powders were characterized by X-ray diffractometry (XRD), specific surface area measurements, and transmission electron microscopy (TEM). The average crystallite size as determined from X-ray line broadening and transmission electron microscopy studies was ∼40 nm. The effects of the calcination temperature and the ratio of triethanolamine to mixed metal ions were also studied.  相似文献   

18.
Synthesis of Yttrium Aluminum Garnet from a Mixed-Metal Citrate Precursor   总被引:1,自引:0,他引:1  
Yttrium aluminum garnet (YAG, Y3Al5O12) was synthesized using a polymeric precursor derived from a mixed-metal citric acid/ethylene glycol/ethanol solution. YAG was found to crystallize directly from an amorphous precursor beginning at temperatures as low as 600°C within 1 h in air. The polymer resin concentration was found to have an effect on the temperature of crystallization initiation. However, all precursors produced a well-crystallized YAG powder within 1 h at 800°C in air. Formation of phase-pure YAG in an argon atmosphere did not occur until heating for 1 h at 1000°C. An optimum cation-to-resin ratio to maximize reactivity provides a polymeric network to ensure a homogeneous dispersion of cations, yet minimizes cation diffusion distances within the char by limiting excess free carbon after polymer pyrolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号