首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
以微孔淀粉和麦芽糊精为壁材,免疫球蛋白为芯材,对免疫球蛋白胶囊化的配方和工艺进行了研究。试验结果表明最佳条件为:麦芽糊精:微孔淀粉为1:1,免疫球蛋白含量10%,总固形物含量40%,喷雾干燥进风温度140℃,出风温度80℃。  相似文献   

2.
玉米色素微胶囊制备工艺研究   总被引:2,自引:0,他引:2  
以微孔淀粉和麦芽糊精为壁材,玉米色素为芯材,对玉米色素胶囊化的配方和工艺进行了研究。试验结果表明最佳条件为:麦芽糊精:微孔淀粉1:1,色素含量10%,总固形物含量40%,喷雾干燥进风温度140℃。出风温度80℃。  相似文献   

3.
金锋 《粮油加工》2007,(9):106-108
以微孔淀粉和麦芽糊精为壁材,玉米色素为芯材,对玉米色素胶囊化的配方和工艺进行了研究。试验结果表明最佳条件为:麦芽糊精与微孔淀粉比例为1:1,色素含量10%,总固形物含量40%,喷雾干燥进风温度140℃,出风温度80℃。  相似文献   

4.
实验所提取的花椒辣椒混合油树脂为芯材,以阿拉伯树胶和麦芽糊精作为壁材,经乳化、均质和喷雾干燥将麻辣油树脂制成微胶囊,研究表明包埋混合油树脂的最佳工艺条件:阿拉伯胶:麦芽糊精为1:6、芯材:壁材为1:5、固形物含量40%、均质压力40 MPa、进料速度10 mL/min、进风温度225℃、出风温度80℃.  相似文献   

5.
以阿拉伯胶和麦芽糊精为壁材,以无花果的乙醇提取物为芯材,用喷雾干燥法制取无花果微胶囊粉。通过正交试验分析,确定了最佳生产工艺条件:芯材与壁材的比例为1:4,阿拉伯胶与麦芽糊精的比例为1:1,固形物浓度为30%,乳化剂用量为0.3%,30 MPa均质2遍,进风温度为200℃,出风温度为81℃。生产出的微胶囊无花果粉色泽、溶解性好,水、表面油含量低,无甚粘壁现象,适合于工业化生产。  相似文献   

6.
采用辛烯基琥珀酸酯化淀粉HI-CAP100和麦芽糊精作为复合壁材,以花生四烯酸为芯材,通过喷雾干燥法制备微胶囊化花生四烯酸,以微胶囊化效率为响应值,用响应面分析法(RSA)对花生四烯酸微胶囊化工艺进行了优化,确定最优工艺参数为:固形物含量39%,均质压力37MPa、喷雾干燥进风温度191 ℃,出风温度为88℃.  相似文献   

7.
喷雾干燥工艺制备大豆异黄酮微胶囊的研究   总被引:1,自引:0,他引:1  
研究喷雾干燥法制备微胶囊大豆异黄酮的工艺及技术。结果表明:制备大豆异黄酮微胶囊的最佳配方为壁材以大豆分离蛋白和麦芽糊精质量比1∶1混合、原料液固形物含量30%、芯材与壁材比例为2∶3;最佳生产工艺参数为均质压力40 MPa,喷雾干燥进风温度200℃、出风温度100℃。  相似文献   

8.
利用辛烯基琥珀酸酯化淀粉进行核桃油微胶囊化的研究   总被引:2,自引:0,他引:2  
为防止核桃油氧化,以辛烯基琥珀酸酯化淀粉HI-CAP100为壁材,采用喷雾干燥法对核桃油进行微胶囊化研究,以确定最佳生产工艺条件,并对产品进行了电镜观察。实验结果表明,壁材选用0.6∶0.4的辛烯基琥珀酸酯化淀粉HI-CAP100和麦芽糊精,载油量为40%,干物质含量为40%,在35~40MPa压力下均质2~3次,喷雾干燥进风温度190℃,出风温度90℃,获得粉末核桃油包埋效率在99%以上。  相似文献   

9.
研究了普鲁兰多糖在制备以大豆蛋白和麦芽糊精为壁材的姜油树脂微胶囊过程中对乳化液的稳定作用及其对微胶囊产品的影响,考察了使用不同比例的大豆蛋白和麦芽糊精作为壁材的微胶囊产品的各项指标以及不同工艺条件对最终微胶囊产品的影响。研究结果表明,普鲁兰多糖添加量在1%(w/v)时具有稳定姜油树脂乳化液的作用,同时可以获得最大的包埋率;大豆蛋白与麦芽糊精最佳的添加比例为1∶2,固形物含量为20%(w/v),均质压力为30MPa(两次),进风温度140℃,出风温度80℃。  相似文献   

10.
《食品与发酵工业》2016,(12):125-131
为了提高番茄红素的稳定性,以酯化微孔淀粉、麦芽糊精、明胶、蔗糖及VC为复合壁材,番茄红素为芯材,通过冷冻干燥的方法制备了番茄红素微胶囊,并对制备的番茄红素微胶囊缓释性能进行了研究。研究表明:采用酯化微孔淀粉、麦芽糊精、明胶、蔗糖及VC为复合壁材,其质量比为1∶0.67∶0.56∶0.22∶0.44,包合温度为50℃,包合时间为0.5 h,芯材和壁材的质量比为10∶90时制得的微胶囊包封率高达91.78%,微胶囊经扫描电镜表征得表面光滑且呈球形,直径在10μm左右;制备的番茄红素微胶囊具有良好的肠溶性,体外释放研究表明其释放数据符合Higuchi扩散模型,说明番茄红素微胶囊体外释放符合菲克扩散机理。  相似文献   

11.
实验以乳化液粘度和包埋率为考察指标,通过单因素及正交实验,借助显微拍照、粒径分布分析,优化了油莎豆油微胶囊制备工艺。结果表明:选用辛烯基琥珀酸酯化淀粉HI-CAP100和麦芽糊精复配作为微胶囊化油莎豆油的壁材,油莎豆油微胶囊制备最优工艺为:壁材比(辛烯基琥珀酸酯化淀粉∶麦芽糊精)为1∶1,载油量为20%,干物质含量为40%,在此条件下,油莎豆油的微胶囊包埋率可达到77.62%,平均粒径为46.78μm。贮藏实验结果表明,微胶囊化油莎豆油的贮藏稳定性较好。  相似文献   

12.
以菠萝粉为芯材,阿拉伯胶和麦芽糊精为壁材,菠萝粉中总胡萝卜素的包埋率和Vc保留率为主要考察指标,通过乳化、均质、喷雾干燥等工艺,制备菠萝粉微胶囊,探讨喷雾干燥法制备菠萝粉微胶囊的工艺条件。通过单因素试验和正交试验确定最佳的工艺条件为:进风温度180℃,壁芯比8:50,壁材内部的配比(阿拉伯胶/麦芽糊精)1:12,入料流量15mL/min,所得微胶囊产品的包埋率为89.01%。  相似文献   

13.
以辣椒红色素为芯材,变性淀粉和明胶为壁材,糊精为填充剂,研究微胶囊化辣椒红色素的制备工艺。通过实验,确定出影响微胶囊化效果的各因素为:变性淀粉与明胶比例为2:1,辣椒红色素含量为40%,乳液固形物含量为45%。通过L9(34)正交试验对微胶囊化喷雾干燥工艺进行优化,在出风温度80℃条件下,确定最佳的喷雾条件为进风温度180℃、进料量20.0ml/min、气流压力0.15MPa。  相似文献   

14.
压缩饼干中糖类优化及其功能性评价   总被引:1,自引:0,他引:1  
阮美娟  朱华平  王越鹏 《食品科学》2005,26(12):208-211
本文以麦芽低聚糖、果葡糖浆、麦芽糊精、淀粉糊精和多聚葡萄糖为糖原添加到压缩饼干中,研究不同糖类对餐后血糖及抗疲劳性能的影响。采用大鼠进行动物实验,糖浆灌胃后检测血糖水平。实验表明选用麦芽低聚糖和麦芽糊精(1:1)复配成混合糖浆,灌胃后可使血糖在4.5h内保持在5mmol/L以上,血糖值高于其他单糖、复配糖类。同时,以血糖、肝糖原和游泳时间为指标的功能性评价表明复配糖类有增加抗疲劳的功能。  相似文献   

15.
以麦芽糊精和阿拉伯胶作为复合壁材,对甜菜红色素进行微胶囊化。实验结果表明:微胶囊化最佳工艺条件为包埋温度30℃,包埋时间1h,壁材/芯材(W/W)比2:1,复合壁材中阿拉伯胶质量分数为60%,此时微胶囊效率为92.5%。微胶囊化后的甜菜红色素对热、光、氧等的稳定性都有明显改善。  相似文献   

16.
玻璃化微胶囊香精的研究   总被引:4,自引:0,他引:4  
吴克刚  孔令会  武伟 《食品科学》2003,24(11):84-88
本文研究碳水化合物为壁材,柠檬油香精为芯材,通过喷雾干燥实现玻璃化微胶囊包埋柠檬油香精。实验结果表明,麦芽糊精(DE9-11)、玉米糖浆(DE42)和阿拉伯胶配比为1:1.5:3.75,香精含量20%~30%时,形成的玻璃态微胶囊壁结构紧密,香精加工挥发损失少;柠檬香精微胶囊Tg为108.4℃。  相似文献   

17.
为防止富含EPA和DHA(54.79%)藻油氧化,以乳清分离蛋白,HI-CAP100和麦芽糊精(DE20)为壁材,采用喷雾干燥法对其进行固体化研究,以包埋率等为指标,确定最佳壁材和工艺条件,并研究了固化过程中EPA藻油脂肪酸组成变化。结果表明,HI-CAP100、乳清分离蛋白与麦芽糊精(DE20)最佳比例为2∶2∶1,单甘脂含量1%,固形物含量40%,35MPA下均质3次,进风温度185~195℃,出风温度90~100℃,载油量30%时,包埋率高达97.03%。载油量为50%时,包埋率高达92.88%。微胶囊制备过程中EPA和DHA分别仅降低了1.021%和1.327%,说明藻油在喷雾过程中PUFA氧化不明显,包埋效果较好。  相似文献   

18.
以玉米淀粉为原料,干法制备黄糊精。通过单因素试验,确定出影响黄糊精糊精含量的因素有,体系含水量、浓HCl量占淀粉质量的比例、反应温度、反应时间。由L9(34)四因素三水平黄糊精正交实验确定出制备黄糊精的最佳工艺参数为:体系含水量为18%,反应温度145℃,反应时间2.5h,浓HCl量占淀粉质量的比例为0.2%。  相似文献   

19.
灵芝速溶茶的研制   总被引:1,自引:1,他引:0  
以灵芝为主要原料,经过浸提浓缩、喷雾干燥等工艺,配以适当辅料调制,研制成热水可溶,溶液透明的灵芝速溶茶。采用单因素正交实验确定灵芝速溶茶的最佳配方为:麦芽糊精25%、CMC0.15%、麦芽糊精和p.环状糊精的比例12:1,蔗糖的含量9‰所制得的灵芝速溶茶颗粒细腻呈黄白色,溶解快速且无沉淀,具有灵芝特有的香味。  相似文献   

20.
A holistic view of the fate of barley starch, arabinoxylan and β-glucan throughout malting and brewing is largely missing. Here, an industrial scale malting trial and pilot brewing trial were performed, and the concentration and structural characteristics of carbohydrates were analysed at 28 key points in the process. The barley starch content decreased during malting from 75.0% to 69.7%. During mashing, malt starch was converted to fermentable sugars (75.3%), dextrin (22.8%) or was retained in spent grains (1.8%). Arabinoxylan was partially hydrolysed during malting. Despite mashing-in at 45°C, no further solubilisation of arabinoxylan was observed during mashing. However, the average degree of polymerisation of the soluble arabinoxylan fraction decreased slightly. During fermentation, the arabinoxylan content decreased to 2.5 g/L. The amount of barley β-glucan decreased gradually in time during malting. Of the solubilised β-glucan, 31% was retained in the spent grains during wort filtration, slightly lowering the β-glucan content in the wort. The β-glucan content remained at 0.5 g/L during fermentation. Sucrose was hydrolysed during mashing, probably by barley invertases. From the total amount of malt used, 41.0% was converted to fermentable sugars. This mashing yield could have been improved by the full hydrolysis to fermentable sugars of the present β-glucan (to 41.1%), the remaining starch in spent grains (to 42.0%) and dextrin in wort (to 50.3%). These results provide more insight into the carbohydrate conversions during malting and brewing and can act as a baseline measurement for future work. © 2020 The Institute of Brewing & Distilling  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号