首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Rewarming ischemia during implantation severely compromises posttransplant pancreas graft survival because the graft has already been subjected to warm and cold ischemia before implantation. The purpose of this study was to examine whether preservation of the pancreas graft by the two-layer method ameliorates rewarming ischemic injury of the graft during implantation using a canine model. After flushing with cold University of Wisconsin solution (UW), the pancreas grafts were preserved by the two-layer (UW/perfluorochemical [PFC]) method (group 1) or simple cold storage in UW (group 2) for 24 hr and then autotransplanted. In control, the pancreas grafts were flushed out with cold UW and immediately autotransplanted without preservation (group 3). After completion of vascular anastomosis, vascular clamp was not released until 90, 120, or 150 min of rewarming ischemia, including anastomosis time, had elapsed. After 90 min of rewarming ischemia, graft survival rates were 5/5, 100%, 5/5, 100%, and 5/5, 100%, in groups 1, 2, and 3, respectively. After 120 min, all the grafts in groups 2 and 3 failed (0/5, 0%, and 0/5, 0%, respectively); however, all the grafts in group 1 survived (5/5, 100%). Even after 150 min, 1 of 3 grafts in group 1 survived (1/3, 33%). After 24 hr preservation, tissue ATP levels of the grafts in group 1 were about 2-fold the reference values before harvesting (8.23 +/- 0.72 vs. 4.44 +/- 0.49 mumol/g dry weight, P < 0.05) and significantly higher compared with group 2 (8.23 +/- 0.72 vs. 1.76 +/- 0.52 mumol/g dry weight, P < 0.01). After 120 min of rewarming ischemia, tissue ATP levels in group 1 were 84% of the reference values and significantly higher compared with group 2 (3.75 +/- 0.25 vs. 1.57 +/- 0.48 mumol/g dry weight, P < 0.05). Two hours after reperfusion, ATP levels in group 1 were 42% of reference values but significantly higher compared with group 2 (1.86 +/- 0.36 vs. 1.03 +/- 0.18 mumol/g dry weight, P < 0.05). We conclude that the two-layer (UW/PFC) method ameliorates rewarming ischemic injury of the pancreas graft during implantation by increasing tissue ATP contents during preservation and consequently maintaining tissue ATP levels during implantation.  相似文献   

2.
The effects of cold storage and type of preservation solution on coronary endothelial function are not well established. Experiments were designed to evaluate coronary endothelial-dependent relaxation after a 4-hour cold (4 degrees C) storage in different preservation solutions. Rat hearts, mounted in the Langendorff apparatus, were arrested with a 10-minute perfusion of 4 degrees C crystalloid hyperkaliemic cardioplegic solution (CHCS) (KCl 24 mEq/l) and stored for 4 hours in the following preservation solutions: CHCS (n = 6), Krebs-Ringer solution (KR) (n = 6), 0.9% NaCl (NS) (n = 6) and the University of Wisconsin solution (UW) (n = 6). A fifth group (n = 6) was perfused and stored in UW solution. Endothelium-dependent and independent coronary artery vasorelaxations were respectively tested by infusing 5-hydroxytryptamine (5-HT) (10(-6) mol/l) and sodium nitroprusside (SNP) (10(-5) mol/l) before and after the storage period. In hearts stored with CHCS or KR, coronary artery flow increase to 5-HT and SNP infusions were not significantly affected. However, in hearts preserved with NS or UW solutions, 5-HT coronary response was significantly decreased, indicating endothelial dysfunction. In addition to these findings, coronary flow increase to SNP infusion was decreased in the group perfused and stored with UW, suggesting smooth muscle dysfunction. These experiments suggest that 4-hour cold storage in NS or UW impairs endothelial-dependent coronary relaxation in the isolated rat heart model.  相似文献   

3.
BACKGROUND: The lung is particularly susceptible to reperfusion injury, both experimentally and clinically after transplantation. The extracellular-type preservation solution Celsior, which has been predominantly studied in cardiac preservation, has components designed to prevent cell swelling, free radical injury, energy depletion, and calcium overload. Using an isolated blood-perfused rat lung model, we investigated whether Celsior would decrease preservation injury and improve lung function after cold ischemic storage and reperfusion compared to Euro-Collins (EC) and University of Wisconsin (UW) solutions. METHODS: Lewis rat lungs were isolated, flushed with the respective cold preservation solution, and then stored at 4 degrees C for 6 or 12 hr. After ischemic storage, the lung block was suspended from a force transducer, ventilated with 100% O2, and reperfused for 90 min with fresh blood via a cannula in the pulmonary artery. Lung compliance, alveolar-arterial oxygen difference, and outflow oxygen tension were all measured. The capillary filtration coefficient (Kf), a sensitive measure of changes in microvascular permeability, was determined. RESULTS: For 6 hr of cold storage, lungs stored in Celsior had lower Kf values than those stored in EC, indicating decreased microvascular permeability. No other significant differences were noted between Celsior and EC or UW. For 12 hr of cold storage, Celsior provided increased oxygenation, decreased alveolar-arterial O2 differences, increased compliance, and decreased Kf values as compared to both EC and UW. CONCLUSIONS: Celsior provides better lung preservation than EC or UW as demonstrated by increased oxygenation, decreased capillary permeability, and improved lung compliance, particularly at 12-hr storage times. These results are highly relevant, inasmuch as EC and UW are the most common clinically used lung preservation solutions. Further studies of Celsior in experimental and clinical lung transplantation, as well as in other solid organs, are indicated.  相似文献   

4.
The purpose of this study was to compare University of Wisconsin (UW) solution with Euro-Collins (EC) solution in their cold preservation effects on rat limbs. Thirty-six Lewis rat limbs were preserved in EC solution (n=18) or UW solution (n=18) at 4 degrees C for 72 hr, and grafted orthotopically to a syngeneic rat using microsurgical techniques. The surgeon was blinded to the solution used. We evaluated the vascular patency rate and death rate of both groups at day 7 after surgery and performed histological evaluations of bone, muscle, growth plate, and articular cartilage for each specimen of successful grafts in both groups. The vascular patency rates of the EC and UW groups were 27.7% (5/18) and 11% (2/18), respectively, and showed no significant difference. The death rates of the EC and UW groups were 50% (9/18) and 60% (10/18), which were not significantly different. There were no clear differences in histological viability between both groups, in all tissues exclusive of bone marrow and muscle tissue. Our results showed that in comparing EC and UW solutions, one was not significantly superior to the other as a cold immersion storage medium after a 72 hr ischemia-induced reperfusion injury.  相似文献   

5.
1. The purpose of this study was to assess the potential of various preservation solutions, orginally designed for solid organs, to protect muscle function during cold storage. 2. The soleus (SOL) and the cutaneous trunci (CT) muscle from the rat were isolated and stored for 2, 4 or 8 h at 10 degrees C. The solutions used, listed in order from an intracellular to an extracellular-like composition, were: University of Wisconsin (UW), Euro-Collins (EC), HTK-Bretschneider (HTK), reversed St. Thomas' Hospital (ST2) and Krebs-Henseleit (KH). After cold storage, the muscles were tested by direct electrical stimulation to obtain the maximum twitch tension (Pt) and the maximum tetanus tension (P0). Subsequently, the muscles were prepared for morphological analysis. 3. In general, storage at 10 degrees C caused a gradual decrease of Pt and P0 with time. After 8 h of storage in the extracellular-like solutions KH and ST2, the P0 was about 50% (SOL) and 35% (CT) of control. Eight hours of storage in intracellular-like solutions resulted in a P0 of 50% of control for HTK, in a P0 of 40% (SOL) and 67% (CT) for UW, but in a P0 of 5% (SOL) and 26% (CT) for EC. These findings corresponded well with the morphological observations. 4. It is concluded that the effects of 10 degrees C storage on skeletal muscle function are not predominantly determined by the intra- or extracellular-like composition of the solutions used. Both UW and HTK were most effective (P0 > 50% of control) in preserving muscle function.  相似文献   

6.
BACKGROUND: This study was designed to investigate the effects of a modified University of Wisconsin (UW) solution supplemented with one of four buffering agents (histidine, bicine [N,N-bis(2-hydroxyethyl)glycine], tricine [N-tris(hydroxymethyl)methylglycine], and Tris) on liver metabolism during cold ischemic storage. METHODS: Rat livers were flushed and stored for a maximum period of 24 hr at 4 degrees C, and tissue energetics, substrate, and anaerobic end-products were assessed; the group exhibiting the best results during storage was recovered in a 60-min period of warm reperfusion. Relative buffering capacities of the experimental solutions (measured over physiological pH range, in mM H+/L) were: UW, 4.1; histidine+UW, 9.8; Tris+UW, 19.0; bicine+UW, 22.5; tricine+UW, 26.8. RESULTS: In the UW group, ATP levels dropped rapidly over the first 4 hr; 1.0 micromol/g (40% of initial) remained after 4 hr of storage. By 2 hr, ATP levels in bicine- and tricine-treated groups were 0.5 and 1.1 micromol/g greater than in the UW-stored livers and by 10 hr, ATP in bicine-treated livers was twofold that of the control (UW) group. Total adenylate levels also reflected a superior elevation of cellular energetics; even after 24 hr, quantities were 1.4 and 2.0 micromol/g higher than the UW group in bicine- and histidine-supplemented organs. The increase in energetics occurred as a result of increased flux through the major anaerobic energy-producing pathway, glycolysis. The glycolytic rate was significantly greater at storage times > 10 hr with solutions supplemented with bicine, histidine, and tricine. Final values for net lactate accumulation over the entire 24-hr storage period were: UW, 10.1 micromol/g; histidine, 14.3 micromol/g; bicine, 15.2 micromol/g; tricine, 13.8 micromol/g. Activities of glycogen phosphorylase revealed that the activity of this enzyme dropped by 50% within 2 hr of storage in UW. However, histidine and bicine supplementation resulted in a substantial elevation of phosphorylase "a" over 4 hr and 10 hr, respectively. The best buffer of the four examined in this study was bicine; energetics, glycolytic flux, and patterns of adenylate regeneration upon reperfusion were markedly superior to modified UW solution. CONCLUSION: The results of this study suggest that supplementing the "gold standard" UW solution with an additional buffering agent (in order of efficacy: bicine>tricine>histidine) may improve the metabolic status of livers during clinical organ retrieval/storage.  相似文献   

7.
The study aims to determine a possible relationship between intracellular water, energy metabolism, functional recovery and membrane permeability, during and after hypothermic cardiac preservation. Isolated rat hearts were stored for 12 h at 4 degrees C with University of Wisconsin (UW), St Thomas Hospital (ST) and Krebs-Henseleit (KH) solutions, and were reperfused for 1 h. Cellular volumes were measured by 1H NMR of water and 59Co NMR of the extracellular marker cobalticyanide, and energetic profiles by 31P NMR spectroscopy. Storage in ST solution reduced ischemic swelling from 2.50 +/- 0.06 to 2.73 +/- 0.09 (P < 0.001 v 3.56 +/- 0.10 ml/g dry weight in KH), while UW solution caused cellular shrinkage to 2.12 +/- 0.08 ml/g dry weight. Intracellular ATP concentrations and pH values were higher in UW as compared to ST solution. At reperfusion, hearts stored in ST shrank while those stored in UW expanded, resulting in similar intracellular volumes. Storage with UW was superior to ST in post-ischemic function 65 +/- 5% (P < 0.01 v 49 +/- 4% with ST) and in recovery of ATP 46 +/- 3% (P < 0.001 v 25 +/- 4% with ST). Storage with both ST and UW solutions did not prevent interstitial edema. Sarcolemmal membrane integrity, as assessed by cellular swelling in response to a hypo-osmotic shock (210 mmol/l), was significantly improved by ST and UW solutions as compared to KH (P < 0.05). Creatine kinase efflux was reduced by ST and UW as compared to KH (P < 0.05), and by UW as compared to ST (P < 0.05). Coronary flow was higher following storage with UW than ST solutions. 66 +/- 6 and 45 +/- 4%, respectively (P < 0.01). According to these data, the beneficial effects of UW and ST solutions on hypothermic ischemic storage of rat hearts included prevention of cellular edema and preservation of sarcolemmal membrane integrity. It is concluded: (a) UW and ST solutions reduce ischemic and reperfusion cellular volumes: (b) both solutions, and UW in particular were efficient in preservation of membrane integrity: (c) prevention of cellular edema is not the single or main mechanism responsible for the improved preservation with UW and ST solutions.  相似文献   

8.
Vasoactive intestinal peptide (VIP) is a known pulmonary and bronchial vasodilator as well as an oxygen free radical scavenger. Since its effect as an additive to University of Wisconsin (UW) solution for lung preservation has been shown previously, the aim of this study was to determine the ability of VIP to improve lung preservation followed by reperfusion. Four groups of excised Sprague-Dawley rat lungs (n = 24) were studied using an isolated blood perfused working lung model. The first 3 groups of lungs were flushed and stored in UW solution at 4 degrees C for: (1) 4 hr, (2) 18 hr, and (3) 24 hr. Group 4 lungs were flushed with UW solution + VIP (1 microgram/ml) and stored in UW solution + VIP (0.5 microgram/ml) for 24 hr. After preservation, the lungs were reperfused to evaluate their functions for 2 hr or until lung failure occurred (arterial oxygen saturation less than 90% and/or appearance of bronchial fluid in the bronchial cannula). In the lungs stored in UW solution for 24 hr, failure occurred after 10 min of reperfusion and all functions were significantly altered. The addition of VIP to UW solution maintained the functional capacity of the lungs, recorded by lung resistance, lung compliance, elastic work, flow resistive work, shunt fraction, and blood oxygen tension. No statistical difference in these parameters other than shunt fraction was found when the VIP group was compared with the group preserved for 4 hr in UW solution. We conclude that lung preservation can be extended to 24 hr with the maintenance of lung functional capacity if VIP is added to UW solution.  相似文献   

9.
The assessment of small bowel graft viability by means of energy metabolism and tissue blood flow was investigated and compared with pathological findings. Syngeneic heterotopic small bowel transplantations were performed using male Lewis rats, which were divided into four groups according to the duration of cold preservation in University of Wisconsin (UW) solution; 6-, 12-, 24-, and 48-hour groups. The adenine nucleotide metabolism, the tissue blood flow, and the pathological profiles of the grafts were all compared among the groups. The adenosine triphosphate (ATP) levels at the end of cold storage and at 30 minutes after reperfusion, as well as the total adenine nucleotide (TAN) levels at the end of cold storage, before reperfusion, and at 30 minutes after reperfusion were significantly lower in the 48-hour group than those in the other groups, and the blood flow level at reperfusion was significantly lower in the 48-hour group than that in the others. Histological damage after reperfusion extended deep into the crypt layer in the 48-hour group but was confined to within villi in the other groups. These results suggest that the tissue ATP, TAN, and the blood flow levels are considered useful parameters for the assessment of small bowel graft viability.  相似文献   

10.
Addition of 10% albumin to the digestion medium has been suggested to enhance yield and integrity of harvested islets by inhibition of proteolytic activities and to improve endocrine function early after transplantation. The aim of this study was to evaluate in vivo by means of intravital fluorescence microscopy whether this rapid reversal of hyperglycemia after transplantation is due to improved graft vascularization. Pancreatic islets were isolated from Syrian golden hamsters by collagenase digestion using either solely Hank's balanced salt solution (HBSS) or HBSS supplemented with 10% human serum albumin. Islets were then transplanted into the dorsal skinfold chamber of syngeneic animals (control: N = 8 animals, n = 50 islets; albumin: N = 7, n = 41). The grafts' microvasculature was analysed on days 6, 10, and 14 after transplantation. Immunohistochemical staining for insulin was performed at the end of the microscopic observation period. Islet isolation with albumin supplementation did not increase islet yield. However, photomicroscopic analysis suggested a beneficial effect on the isolation process with improved islet integrity and prevention of outer margin irregularities, in particular in large islets. Analysis of revascularization 6 days after transplantation revealed in the control group a functional capillary density (FCD) of 477 +/- 47 cm-1. On day 10 FCD increased to 680 +/- 42 cm-1 with no further changes on day 14, indicating complete revascularization. Islets in the albumin group demonstrated a comparable FCD of 598 +/- 49 cm-1 on day 10 and complete revascularization on day 14 (655 +/- 45 cm-1). The angio-architecture of the islets was found similar in both groups, presenting with a glomerulum-like capillary network, comparable to that of pancreatic islets in situ. We conclude that the addition of 10% serum albumin to the collagenase digestion medium improves the preservation of the structural integrity of isolated pancreatic islets, however, does not influence the process of graft vascularization. Thus, improved early graft function may rather be due to superior preservation of islet cell integrity and function.  相似文献   

11.
BACKGROUND: Cyclic nucleotides mediate intracellular signal transduction of several vasodilators. In addition to its vascular relaxant effects, cAMP is known to protect endothelial cells and to suppress Kupffer cell activation. On the other hand, cGMP potently ameliorates adhesion of leukocytes and platelets. We tested the effects of two analogs of cyclic nucleotides (8bromo cyclic adenosine monophosphate [8br-cAMP] and 8bromo cyclic guanosine monophosphate [8br-cGMP]) in rat liver preservation. METHODS: In experiment 1, either analog (0.1-1.0 mM) alone was added to University of Wisconsin (UW) solution in a survival study. In experiment 2, donors and recipients were also treated with 8br-cAMP or 8br-cGMP, with the following three groups tested: group 1=control; group 2=administration of 8br-cAMP to donors, UW solution, and recipients; group 3=administration of 8br-cGMP to donors, UW solution, and recipients. Experiment 3 tested combined treatments: group 4=administration of 8br-cGMP to donors and UW solution, and cAMP to recipients; group 5=administration of 8br-cAMP to donors and UW solution, and 8br-cGMP to recipients. To elucidate the roles of each nucleotide, two further groups were tested: group 6=administration of 8br-cAMP to donors and UW solution; group 7=administration of 8br-cGMP to recipients. In experiment 4, rats in groups 1, 5, 6, and 7 were killed at several time points after reperfusion, and percent graft blood flow (%BF), number of accumulated neutrophils, plasma levels of tumor necrosis factor-alpha and interleukin-1, and serum alanine aminotransferase levels were examined. RESULTS: In experiments 1 and 2, no significant effect was observed on animal survival. In experiment 3, a significant increase in animal survival was observed only in group 5 (100%, 7/7, P=0.0004 vs. group 1: 16.7%, 2/12). In group 5, no improvement of %BF was observed during the early phase of reperfusion (15 and 30 min) compared with that in group 1. On the other hand, the %BF of group 5 was significantly higher in the later phase (6 hr), consistent with the decrease in accumulation of neutrophils observed then. Production of tumor necrosis factor-alpha and serum alanine aminotransferase levels were also reduced with this treatment. Histologically, the bleeding and segmental necrosis, observed in group 1, were completely prevented in group 5. CONCLUSIONS: We conclude that restoration of grafts with cAMP and administration of cGMP to recipients led to successful transplantation, and that the two analogs acted synergistically in opposing preservation and reperfusion injury without improvement of graft blood flow during the early phase of reperfusion. The effect was due to their regulation of neutrophil activation and sequestration.  相似文献   

12.
BACKGROUND: Ischemia caused by cold storage (CS) and reperfusion of the kidney is often responsible for delayed graft function after transplantation. Significant attention has been focused on the cascade of events involved in ischemia-reperfusion injury, with the objective of identifying drugs to ameliorate the functional damage that occurs. METHODS: The purpose of this study was to evaluate the renal function of isolated perfused pig kidneys after 48 hr of CS with Euro-Collins (EC) solution plus trimetazidine (EC+TMZ), standard EC solution, or University of Wisconsin (UW) solution. Normothermic isolated perfused pig kidneys were randomized into five experimental groups: (A) control group (cold flush with cold heparinized saline and immediately reperfused; n=6); (B) cold flush with cold heparinized saline with TMZ (10(-6) M), n=6; (C) 48 hr of CS with EC and reperfusion (n=8); (D) 48 hr of CS with EC+TMZ alone and reperfusion (n=8); (E) 48 hr of CS with UW and reperfusion (n=8). Proton nuclear magnetic resonance spectroscopy and biochemical studies were performed for the functional evaluation during reperfusion. Lipid peroxidation was also determined. Histological examination (optical and electron microscopy) was performed after CS and reperfusion. RESULTS: Using TMZ, the renal perfusate flow rate as well as the glomerular filtration rate and proximal tubular function were significantly improved. This improvement of renal function during reperfusion was correlated with a less significant cellular and interstitial edema. In addition, tubular injury markers were significantly lower in the group preserved with EC+TMZ, and TMZ reduced lipid peroxidation dramatically during reperfusion. CONCLUSIONS: The addition of TMZ to the EC solution increased the preservation quality and renal tubular function, and gave protection from reperfusion injury better than EC alone or UW. These results strongly suggest that TMZ has a cytoprotective effect and may therefore be useful for kidney preservation.  相似文献   

13.
OBJECTIVE: The authors' goal was to determine the effects of specific binding and blockade of P- and E-selectins by a soluble P-selectin glycoprotein ligand-1 (PSGL-1) in rat models of hepatic in vivo warm ischemia and ex vivo cold ischemia. The authors also sought to determine the effect of selectin blockade on isograft survival in a syngeneic rat orthotopic liver transplant model. SUMMARY BACKGROUND DATA: Ischemia/reperfusion (I/R) injury is a major factor in poor graft function after liver transplantation, which may profoundly influence early graft function and late changes. It is hypothesized that I/R injury leads to the upregulation of P-selectin, which is then rapidly translocated to endothelial cell surfaces within 5 minutes of reperfusion of the liver, initiating steps leading to tethering of polymorphonuclear neutrophil leukocytes to the vascular intima. Local production by leukocytes of interleukin-1, tumor necrosis factor-alpha, or both induces P-selectin expression on the endothelium and continues the cascade of events, which increases cell adherence and infiltration of the organ. METHODS: To examine directly the effects of selectins in a warm hepatic I/R injury model, 100 microg of PSGL-1 or saline was given through the portal vein at the time of total hepatic inflow occlusion. The effects of PSGL-1 in cold ischemia were assessed using an isolated perfused rat liver after 6 hours of 4 degrees C storage in University of Wisconsin (UW) solution, with or without the instillation of PSGL-1 before the storage. To evaluate the effect of selectin blockade on liver transplant survival, syngeneic orthotopic liver transplants were performed between inbred male Sprague-Dawley rats after 24 hours of cold ischemic storage in UW solution. A separate group of animals received two doses of 100 microg of PSGL-1 through the portal vein before storage and before reperfusion of the transplanted liver. Recipient survival was assessed at 7 days, and the Kaplan-Meier product limit estimate method was used for univariate calculations of time-dependent recipient survival events. RESULTS: In an in vivo warm rat liver ischemia model, perfusion with PSGL-1 afforded considerable protection from I/R injury, as demonstrated by decreased transaminase release, reduced histologic hepatocyte damage, and suppressed neutrophil infiltration, versus controls (p < 0.05). When cold stored livers were reperfused, PSGL-1 reduced the degree of hepatocyte transaminase release, reduced neutrophil infiltration, and decreased histologic hepatocyte damage (p < 0.05 vs. UW-only controls). On reperfusion, livers treated with PSGL-1 demonstrated increased portal vein blood flow and bile production (p < 0.05 vs. UW-only controls). In addition, 90% of the rats receiving liver isografts stored in UW solution supplemented with PSGL-1 survived 7 days versus 50% of those whose transplanted syngeneic livers had been stored in UW alone (p < 0.05). CONCLUSIONS: Selectins play an important role in I/R injury of the liver. Early modulation of the interaction between P-selectin and its ligand decreases hepatocyte injury, neutrophil adhesion, and subsequent migration in both warm and cold rat liver ischemia models. In addition, the use of PSGL-1 before ischemic storage and before transplantation prevents hepatic injury, as documented by a significant increase in liver isograft survival. These findings have important clinical ramifications: early inhibition of alloantigen-independent mechanisms during the I/R damage may influence both short- and long-term survival of liver allografts.  相似文献   

14.
In an attempt to reduce the variability in the yields of human islets isolations and to identify donor factors that were potentially deleterious, we retrospectively reviewed 153 human islets isolations in our center over a 3-year period. Isolations were performed using controlled collagenase perfusion via the duct, automated dissociation, and Ficoll purification. Factors leading to successful isolations (recovery of >100,000 islet equivalents at a purity >50%) were analyzed retrospectively using univariate and multivariate analysis. Critical factors in the multiorgan cadaveric donors that were identified using univariate analysis included donor age (P<0.01), body mass index (BMI)(P<0.01), cause of death (P<0.01), and prolonged hypotensive episodes (systolic blood pressure <90 mmHg or mean arterial pressure <60 mmHg for > 15 min) requiring high vasopressors (>15 microgram/kg/min dopamine or >5 microgram/kg/min Levophed) (P>0.01). Independent analysis of 19 donor variables using multivariate logistic stepwise regression showed six factors were statistically significant. Odds ratio (OR) showed that donor age (OR 1.1, P<0.01), local procurement team (OR 10.9, P<0.01), and high BMI (OR 1.4, P<0.01) had a positive correlation with islet recovery. In contrast, hyperglycemia (all blood glucose >10 mmol/L) (OR 0.63, P<0.01), frequency and duration of cardiac arrest (OR 0.7, P<0.01), and increased duration of cold storage before islet isolation (OR 0.83, P<0.01) had negative correlation. Using these combinations of factors, the prediction of success was 85% accurate. By donor age, success was 13% for 2.5- to 18-year-old donors (n=23), 37% for 19- to 28-year-old donors (n=30), 65% for 29- to 50-year-old donors (n=70), and 83% for 51- to 65-year-old (n=29) donors. However, when vitro function was assessed by perifusion, the insulin secretory capabilities of islets isolated from the >50-year-old donor group was significantly reduced as compared with the 2.5- to 18-year-old group (P<0.02). Multiple regression analysis using postdigestion and postpurification islet recovery as outcome variables identified BMI, procurement team, pancreas weight, and collagenase digestion time factors tht can affect the recovery of human islets. Locally procured pancreases and donors with elevated minimum blood glucose levels were identified as factors that affect the insulin secretory capabilities of the isolated islets. This review of parameters suggests an improved approach to the prediction of successful islet isolation from human pancreases. Selection of suitable pancreases for processing may improve consistency in human islet isolation and thereby decrease costs.  相似文献   

15.
The aim of this study is to examine the morphology and function and small-caliber, arterial grafts after preservation in the University of Wisconsin solution (UW). Rat carotid arteries were stored in UW (n = 10) or in phosphate-buffered saline (PBS) (n = 10) for 1, 3, 7, and 14 days and were examined with light microscopy (LM) and scanning electron microscopy (SEM). Rat aortic preparations were stored in UW or PBS for 1 hour, 24 hours, 72 hours, 7 days, and 14 days and assessed for functional responses (stimulated contraction and endothelium-dependent relaxation). Segments (5 mm) of rat carotid arteries were stored in UW or PBS for 3 days, 7 days, and 14 days and orthotopically implanted as autografts and allografts. No immunosuppressive or anticoagulant agents were used. After 28 days of implantation, the grafts were assessed for patency and excised for LM and SEM. In UW, the endothelial layer remained intact up to 9 days of storage. In PBS, the endothelial layer showed deterioration after 1 day and was completely lost after 3 days. Functional responses were demonstrated to exist for as long as 7 days storage in UW. In PBS, no responses could be evoked after 24 hours storage. Autografts preserved in UW for 3 days (n = 6), 7 days (n = 6), and 14 days (n = 6) showed patency rates of 83.3%, 66.6%, and 66.6%, respectively, whereas patency rates of allografts were 66.6%, 33.3%, and 33.3%, respectively. Autografts stored in PBS for 3 days (n = 6), 7 days (n = 6), and 14 days (n = 6) showed patency rates of 33.3%, 33.3%, and 50%, respectively, whereas patency rates of allografts were 16.7%, 0%, and 33.3%, respectively. The UW preserved autografts showed normal morphology. All other groups showed vessel wall degeneration which in the allograft groups, were accompanied by lymphocellular infiltration. In conclusion, the endothelial layer and vessel wall of arteries are adequately preserved in UW. Functional responses are retained up to 14 days storage in UW, but, are lost after 24 hours storage in PBS. Autograft implantation studies accordingly show good performance of arterial segments preserved in UW, whereas allografts are subject to degradation as a result of rejection.  相似文献   

16.
We examined the efficacy of relatively low temperature collagenase digestion at 20 degrees C on the yield and viability of islets after long-term cold preservation. Wistar rat pancreases were distended with University of Wisconsin solution via a pancreatic duct at the time of harvesting to which collagenase and 2.5 mM calcium chloride were added. The pancreases were cold-preserved at 4 degrees C for 24 or 48 hr. After storage, they were incubated for collagenase digestion at 37 degrees C or 20 degrees C for various incubation periods to obtain the peak yield. At 20 degrees C, in vitro collagenase activity measured by the FALGPA method was one fourth of that at 37 degrees C, and pancreases were well digested with a prolonged digestion period (60-90 min vs. 15-20 min for the 37 degrees C group). In vitro insulin secretion of islets isolated from freshly removed pancreases was maintained at 20 degrees C for 120 min in University of Wisconsin solution as compared with 30 min at 37 degrees C. Therefore, the preserved pancreases used in this study were incubated either at 37 degrees C or 20 degrees C at various times in order to obtain peak islet yields. The islet yields from 24-hr cold-preserved pancreases at 37 degrees C and 20 degrees C digestion were 573 +/- 59/rat (n = 6) and 497 +/- 84/rat (n = 11), respectively, and those from 48-hr cold-preserved pancreases were 395 +/- 113/rat (n = 6) and 414 +/- 75/rat (n = 6), respectively. The yields from 24- and 48-hr cold-preserved pancreases were significantly low compared with 635 +/- 52/rat for fresh pancreases (n = 15), but there was no significant difference between the 2 methods. The viability of the isolated islets, which was examined by transplantation to streptozotocin-induced diabetic C57BL/6 mice, showed a significant difference in the capacity to ameliorate diabetes. The functional success rate of islet transplantation after 24-hr cold preservation was equally good (8/8 for 37 degrees C group vs. 9/10 for 20 degrees C group), but the rate for those from 48-hr cold-preserved pancreases was significantly better with digestion at 20 degrees C than at 37 degrees C (1/8 for 37 degrees C group vs. 7/8 for 20 degrees C group, P < 0.05). We concluded that viable islets can be isolated from 48-hr cold-preserved pancreases with the low temperature collagenase digestion method, which shows promise as a modality for successful clinical islet transplantation.  相似文献   

17.
A terminal rinse (TR) is standard practice in liver preservation with University of Wisconsin solution (UW) to avoid a potassium load. The fact that sodium lactobionate sucrose solution (SLS) is an effective organ preservation solution with a low potassium provided an opportunity to evaluate rat liver preservation without the TR step. Its importance was investigated in 122 rat liver preservation experiments. In study 1, UW and a hydroxyethyl starch-free, modified UW (UWm) were used for 20-hr liver preservation followed by either no TR or Ringer's lactate TR. The 1-week survival was: UW-TR, 2/14; UW-no TR, 1/6; UWm-TR, 0/6; UWm-no TR, 5/5 (P < 0.01). In study 2, livers were stored for 30 hr in SLS, UW, UWm, and UWm + chlorpromazine 5 mg/L, all without a TR. Nine of 11 rats survived 7 days after SLS, but there were no survivors in the other groups (P < 0.05). Study 3 compared no TR with TR with SLS, Ringer's lactate (RL), or a modified Carolina rinse (CRm) after 30-hr SLS preservation. Survival, serum aspartate aminotransferase and alanine aminotransferase, and histology were assessed. One-week survival of 9/11 rats in no TR was significantly better than in the other groups (3/14 in TR-SLS, 0/8 in TR-RL, and 0/14 in TR-CRm, P < 0.01). The values of aspartate aminotransferase (mean +/- SE) 3 hr after transplantation were 1862 +/- 439 U/L, 3334 +/- 817 U/L, 6591 +/- 1944 U/L, and 7028 +/- 1704 U/L, respectively, in no TR, TR-SLS, TR-RL, and TR-CRm. There were significant differences both in aspartate aminotransferase and alanine aminotransferase between no-TR and each of TR-RL and TR-CRm (P < 0.05). Liver specimens from rats killed 3 hr after OLT showed only mild injury in the no TR group and severe injury in the remaining groups. We conclude that a terminal rinse is harmful in rat liver preservation.  相似文献   

18.
BACKGROUND: The effects of hypothermic injury to the liver were investigated on an isolated perfusion circuit by comparing porcine livers with varying degrees of preservation injury. METHODS: A group of unstored livers (n = 5) were compared to livers stored in University of Wisconsin (UW) solution for 18 h (n = 5), and a group of livers stored in Hartmann's solution for 18 h (n = 5). RESULTS: We observed that the degree of platelet sequestration was directly related to the severity of the preservation injury. After 2 h of isolated liver perfusion, the perfusate platelet count fell from 148 +/- 14 x 10(9)/L to 84 +/- 13 x 10(9)/L for control livers. In comparison for livers stored in UW solution, the platelet count fell from 173 +/- 43 x 10(9)/L to 61 +/- 14 x 10(9)/L representing a 64.8% fall, while for those stored in Hartmann's solution, an even more profound fall from 152 +/- 36 x 10(9)/L to 19 +/- 9 x 10(9)/L (87.5% fall) was observed. The difference between the UW-stored and Hartmann's-stored livers was significant (P < 0.05). However, using this model, the degree of leukocyte sequestration did not differentiate the groups. Both histological and ultrastructural examination of liver biopsies taken immediately following revascularization demonstrated that for mild degrees of preservation injury following hypothermic storage, changes occur to the sinusoidal lining cells well before changes to the parenchymal elements. CONCLUSIONS: These findings substantiate the hypothesis that the primary injury associated with hypothermia involves the sinusoidal lining cells (non-parenchymal elements), that it is predominantly a reperfusion phenomenon and that efforts at improving preservation should therefore be targeted primarily at these cells and not the hepatocytes.  相似文献   

19.
A reliable and easy method for assessing the viability of a cold ischemia-preserved donor liver prior to transplantation into the recepient is needed. Based on an earlier study, we hypothesized that liver free fatty acid (FFA) leakage into the preservation fluid may be a useful, atraumatic indicator of irreversible ischemic injury. The aim of the present study was to determine the time course and magnitude of liver FFA release into the preservation solution and its correlation with the duration of cold ischemic preservation compatible with survival after transplantation. Rat livers (n = 48) were flushed and preserved with University of Wisconsin (UW) solution at 4 degrees C for 0, 12, 24, and 48 h. Thereafter, half of the livers were analyzed for preservation fluid FFA (gas-liquid chromatography) and protein. The other half were perfused with Krebs-Henseleit (KH) solution at 37 degrees C for 1 h. Bile secretion and liver enzyme release (SGOT, SGPT, and LDH) were measured in addition to perfusate FFA and protein. Total FFA in the preservation fluid was 24 micrograms/g wet tissue after 12 h; it increased sharply 2.6-fold after 24 h and 3.7-fold after 48 h of preservation. Bile production was normal after 12 h of preservation but fell by 20% and 54% after 24 h and 48 h, respectively. LDH release rose from a value of 20 U/l at 0 time to 120 U/l and 260 U/l after 24 h and 48 h of preservation. These results suggest that liver viability declines sharply between 12 and 24 h of cold ischemic preservation, which corresponds with a sharp decrease in the 1-week survival from 100% to 33% after 12 h and 24 h, respectively, of cold ischemic preservation. We conclude that measuring FFA and LDH in the preservation solution of donor livers may be a useful means of assessing the quality of the cold-preserved liver before insertion into the recipient. We also speculate that a "threshold" FFA level in the UW preservation fluid indicating irreversible damage may be in the order of 35 micrograms total FFA/g liver. Studies on the clinical applicability of our findings are currently under way.  相似文献   

20.
BACKGROUND: Various cryopreservation techniques have been investigated to elongate preservation time, however, most have failed to be clinically induced because of damage due to ice crystal formation. Subzero nonfreezing conditions could theoretically reduce organ metabolism without damage due to ice crystal formation. We evaluated the superiority of subzero nonfreezing storage compared with conventional hypothermic storage using isolated rat hepatocytes stored in University of Wisconsin (UW) solution without cryoprotectants. METHODS: Hepatocytes of Wistar rats isolated by collagenase digestion were suspended in UW solution and divided into the following three groups: subzero nonfreezing group (-4 degrees C), zero nonfreezing group (0 degrees C), and control group (4 degrees C). They were stored for 48 hr at the temperatures indicated. After 24 and 48 hr of storage, we carried out a trypan blue exclusion test and a 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay, and measured lactate dehydrogenase release, lactic acid, ATP content, and the ability of hepatocytes to synthesize urea. After 48 hr of storage, morphological differences between the control group and the subzero nonfreezing group were investigated by scanning and transmission electron microscopy. RESULTS: Significant improvements of the trypan blue exclusion test and ATP contents in the subzero nonfreezing group were observed. Lactic acid production was also significantly suppressed in the subzero nonfreezing group compared with that in the control group. The MTT assay value was significantly better at -4 degrees C than at 4 degrees C. The rate of urea synthesis at -4 degrees C was higher than that at 4 degrees C. Electron microscopy revealed that subzero nonfreezing delayed the lethal bleb-forming process of stored hepatocytes, which was followed by mitochondrial swelling, compared with the control group. CONCLUSIONS: Subzero nonfreezing storage (-4 degrees C) in UW solution could provide better preservability for isolated rat hepatocytes with protection against hypoxic cell injury compared with conventional hypothermic storage (4 degrees C).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号