首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Growth factors activate mitogen-activated protein kinases (MAPKs), including extracellular signal-regulated kinases (ERKs) and Jun kinases (JNKs). Although the signaling cascade from growth factor receptors to ERKs is relatively well understood, the pathway leading to JNK activation is more obscure. Activation of JNK by epidermal growth factor (EGF) or nerve growth factor (NGF) was dependent on H-Ras activation, whereas JNK activation by tumor necrosis factor alpha (TNF-alpha) was Ras-independent. Ras activates two protein kinases, Raf-1 and MEK (MAPK, or ERK, kinase) kinase (MEKK). Raf-1 contributes directly to ERK activation but not to JNK activation, whereas MEKK participated in JNK activation but caused ERK activation only after overexpression. These results demonstrate the existence of two distinct Ras-dependent MAPK cascades--one initiated by Raf-1 leading to ERK activation, and the other initiated by MEKK leading to JNK activation.  相似文献   

3.
4.
We attempted to elucidate molecular mechanisms of gonadotropin-releasing hormone (GnRH) gene regulation by the protein kinase C (PKC) pathway in GT1-1 cells. Activation of PKC with 12-tetra-decanoylphorbol-13-acetate (TPA) or inhibition with staurosporine or calphostin C down-regulated GnRH mRNA levels. A serial deletion mutant analysis revealed that this suppression was mediated by the proximal region (-187/-69) of the mouse GnRH promoter. TPA transiently induced c-fos mRNA, whereas staurosporine or calphostin C failed to do so. However, PKC inhibitors blocked the TPA-evoked c-fos induction. Over-expression of PKC alpha down-regulated GnRH promoter activity, indicating that PKC activation was sufficient to inhibit GnRH gene expression. These results suggest that both activation and inhibition of PKC decrease the GnRH gene expression in the GT1-1 cells probably through different signal cascade mechanisms.  相似文献   

5.
Several G protein-coupled receptors that interact with pertussis toxin-sensitive heterotrimeric G proteins mediate Ras-dependent activation of mitogen-activated protein (MAP) kinases. The mechanism involves Gbetagamma subunit-mediated increases in tyrosine phosphorylation of the Shc adapter protein, Shc*Grb2 complex formation, and recruitment of Ras guanine nucleotide exchange factor activity. We have investigated the role of the ubiquitous nonreceptor tyrosine kinase c-Src in activation of the MAP kinase pathway via endogenous G protein-coupled lysophosphatidic acid (LPA) receptors or by transient expression of Gbetagamma subunits in COS-7 cells. In vitro kinase assays of Shc immunoprecipitates following LPA stimulation demonstrated rapid, transient recruitment of tyrosine kinase activity into Shc immune complexes. Recruitment of tyrosine kinase activity was pertussis toxin-sensitive and mimicked by cellular expression of Gbetagamma subunits. Immunoblots for coprecipitated proteins in Shc immunoprecipitates revealed a transient association of Shc and c-Src following LPA stimulation, which coincided with increases in Shc-associated tyrosine kinase activity and Shc tyrosine phosphorylation. LPA stimulation or expression of Gbetagamma subunits resulted in c-Src activation, as assessed by increased c-Src autophosphorylation. Overexpression of wild-type or constitutively active mutant c-Src, but not kinase inactive mutant c-Src, lead to increased tyrosine kinase activity in Shc immunoprecipitates, increased Shc tyrosine phosphorylation, and Shc.Grb2 complex formation. MAP kinase activation resulting from LPA receptor stimulation, expression of Gbetagamma subunits, or expression of c-Src was sensitive to dominant negatives of mSos, Ras, and Raf. Coexpression of Csk, which inactivates Src family kinases by phosphorylating the regulatory C-terminal tyrosine residue, inhibited LPA stimulation of Shc tyrosine phosphorylation, Shc.Grb2 complex formation, and MAP kinase activation. These data suggest that Gbetagamma subunit-mediated formation of Shc.c-Src complexes and c-Src kinase activation are early events in Ras-dependent activation of MAP kinase via pertussis toxin-sensitive G protein-coupled receptors.  相似文献   

6.
Treatment of cells with tumor-promoting phorbol esters results in the activation but then depletion of phorbol ester-responsive protein kinase C (PKC) isoforms. The ubiquitin-proteasome pathway has been implicated in regulating the levels of many cellular proteins, including those involved in cell cycle control. We report here that in 3Y1 rat fibroblasts, proteasome inhibitors prevent the depletion of PKC isoforms alpha, delta, and epsilon in response to the tumor-promoting phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA). Proteasome inhibitors also blocked the tumor-promoting effects of TPA on 3Y1 cells overexpressing c-Src, which results from the depletion of PKC delta. Consistent with the involvement of the ubiquitin-proteasome pathway in the degradation of PKC isoforms, ubiquitinated PKC alpha, delta, and epsilon were detected within 30 min of TPA treatment. Diacylglycerol, the physiological activator of PKC, also stimulated ubiquitination and degradation of PKC, suggesting that ubiquitination is a physiological response to PKC activation. Compounds that inhibit activation of PKC prevented both TPA- and diacylglycerol-induced PKC depletion and ubiquitination. Moreover, a kinase-dead ATP-binding mutant of PKC alpha could not be depleted by TPA treatment. These data are consistent with a suicide model whereby activation of PKC triggers its own degradation via the ubiquitin-proteasome pathway.  相似文献   

7.
Several observations indicate that the Raf-1 kinase is a downstream effector of protein kinase C-epsilon (PKC epsilon). We recently have shown that Raf-1 is constitutively activated in PKC epsilon transformed Rat6 fibroblasts, and transformation can be reverted by expression of a dominant negative Raf-1, but not a dominant negative Ras mutant (Cacace et al., 1996). Cai et al. (1997) demonstrated that PKC epsilon induced proliferation of NIH3T3 cells is independent of Ras or Src, but depends on Raf-1. These authors further suggested that PKC epsilon activates Raf-1 by direct phosphorylation. Here we have investigated the functional interaction between PKC epsilon and Raf-1. PKC epsilon, but not PKC alpha, was found to bind to the Raf-1 kinase domain. The association appeared to be direct, as it could be reconstituted in vitro with purified proteins. Raf-1 and PKC epsilon could be co-precipitated from Sf-9 insect cells and PKC epsilon transformed NIH313 cells (NIH/epsilon). The association was negatively regulated by ATP in vitro and by TPA treatment in NIH/epsilon cells, but not in Sf-9 insect cells. Raf-1 was constitutively activated in NIH/epsilon cells. However, using coexpression experiments in Sf-9 cells and transiently transfected A293 cells we did not obtain any evidence for a direct activation of Raf-1 by PKC epsilon. PKC epsilon did not induce translocation of Raf-1 to the membrane. Furthermore, PKC epsilon did not activate Raf-1 nor enhance the kinase activity of Raf-1 that had been pre-activated by coexpression of Ras or the Lck tyrosine kinase. In contrast, conditioned media from PKC epsilon transformed cells induced a robust activation of Raf-1. This activation could be partially reproduced by recombinant TGFbeta, a growth factors secreted by PKC epsilon transformed Rat6 cells. In conclusion, our results suggest that PKC epsilon stimulates Raf-1 indirectly by inducing the production of autocrine growth factors.  相似文献   

8.
Stimulation of the high affinity IgE receptor (FC epsilonRI) as well as a variety of stresses induce activation of c-Jun N-terminal protein kinases (JNKs) stress-activated protein kinases in mast cells. At least three distinct signaling pathways leading to JNK activation have been delineated based on the involvements of Bruton's tyrosine kinase (Btk), protein kinase C (PKC), and the JNK-activating cascades composed of multiple protein kinases. The PKC-dependent pathway, which is inhibited by a PKC inhibitor Ro31-8425 and can be activated by PMA, functions as a major route in FC epsilon RI-stimulated mast cells derived from btk gene knockout mice. On the other hand, wild-type mouse-derived mast cells use both PKC-dependent and PKC-independent pathways for JNK activation. A PKC-independent pathway is regulated by Btk and SEK1 via the PAK-->MEKK1-->SEK1-->JNK cascade, and is sensitive to phosphatidylinositol 3-kinase inhibitors, wortmannin and LY-294002, while the PKC-dependent pathway is affected to a lesser extent by both wortmannin treatment and overexpression of wild-type and dominant negative mutant SEK1 proteins. Another PKC-independent pathway involves Btk and MKK7, a recently cloned direct activator of JNK. Among the stresses tested, UV irradiation seems to activate Btk and JNK via the PKC-independent pathways.  相似文献   

9.
Transforming growth factor beta (TGF-beta)-activated kinase (TAK1) is known for its involvement in TGF-beta signaling and its ability to activate the p38-mitogen-activated protein kinase (MAPK) pathway. This report shows that TAK1 is also a strong activator of c-Jun N-terminal kinase (JNK). Both the wild-type and a constitutively active mutant of TAK1 stimulated JNK in transient transfection assays. Mitogen-activated protein kinase kinase 4 (MKK4)/stress-activated protein kinase/extracellular signal-regulated kinase (SEK1), a dual-specificity kinase that phosphorylates and activates JNK, synergized with TAK1 in activating JNK. Conversely, a dominant-negative (MKK4/SEK1 mutant inhibited TAK1-induced JNK activation. A kinasedefective mutant of TAK1 effectively suppressed hematopoietic progenitor kinase-1 (HPK1)-induced JNK activity but had little effect on germinal center kinase activation of JNK. There are two additional MAPK kinase kinases, MEKK1 and mixed lineage kinase 3 (MLK3), that are also downstream of HPK1 and upstream of MKK4/SEK mutant. However, because the dominant-negative mutants of MEKK1 and MLK3 did not inhibit TAK1-induced JNK activity, we conclude that activation of JNK1 by TAK1 is independent of MEKK1 and MLK3. In addition to TAK1, TGF-beta also stimulated JNK activity. Taken together, these results identify TAK1 as a regulator in the HPK1 --> TAK1 --> MKK4/SEK1 --> JNK kinase cascade and indicate the involvement of JNK in the TGF-beta signaling pathway. Our results also suggest the potential roles of TAK1 not only in the TGF-beta pathway but also in the other HPK1/JNK1-mediated pathways.  相似文献   

10.
Mitogen-activated protein (MAP) kinases mediate responses to a wide array of cellular stimuli. These cascades consist of a MAP kinase or extracellular signal-regulated kinase (ERK), activated by a MAP/ERK kinase (MEK), in turn activated by a MEK kinase (MEKK). MEKK1 has been shown to be a strong activator of the c-Jun N-terminal kinase/stress-actived protein kinase (JNK/SAPK) pathway. We report here that JNK/SAPK binds directly to the N-terminal, noncatalytic domain of MEKK1 in vitro and in transfected cells. Immobilized MEKK1-derived peptides extract JNK/SAPK selectively from cell lysates. MEKK1 coimmunoprecipitates with multiple JNK/SAPK isoforms in transfected cells. Expression of the N terminus of MEKK1 lacking the kinase domain increases activation of endogenous JNK/SAPK by MEKK1. The data are consistent with a model in which MEKK1-JNK/SAPK binding facilitates the receipt of signals from upstream inputs and localizes JNK/SAPK to intracellular targets of the pathway.  相似文献   

11.
Recently we have reported that the adaptor protein Crk transmits signals to c-Jun kinase (JNK) through C3G, a guanine-nucleotide exchange protein for the Ras family of small G proteins. Transient expression of C3G in 293T cells induced JNK1 activation without a significant effect on extracellular signal-related kinase 1 (ERK1), whereas mSos1 activated equally both JNK1 and ERK1. Coexpression of the dominant negative form of Ras-N17 did not suppress C3G-induced JNK1 activation but reduced the activity of JNK1 induced by mSos1, suggesting that Ras is not required for JNK activation by C3G. Ras-independent activation of JNK was supported by the finding that C3G-induced JNK activation was not inhibited by the dominant negative forms of Rac or Pak, which are components of the signaling pathway from Ras leading to JNK activation. In contrast, C3G-induced JNK1 activation was strongly inhibited by coexpression of the kinase negative forms of the mixed lineage kinase (MLK) family of proteins, MLK3 and dual leucine zipper kinase (DLK). In addition, MLK3-induced JNK1 activation was found to be suppressed by the kinase negative form of DLK, which bound to MLK3. These results suggest that C3G activates JNK1 through a pathway involving the MLK family of proteins.  相似文献   

12.
Tumor necrosis factor alpha (TNFalpha) has pleiotropic effects on cellular metabolism. One of the signaling paths from the TNFalpha receptor induces a stress-activated protein kinase cascade. Components within this TNFalpha kinase cascade include mitogen-activated protein kinase/extracellular signal-regulated kinase kinase kinase 1 (MEKK1) and stress-activated protein kinase/extracellular signal-regulated kinase kinase (SEK), which regulate the activity of c-Jun N-terminal kinase 1 (JNK1). Currently, molecules upstream of MEKK1 that link TNFalpha receptor to downstream kinases are not well understood. Besides TNFalpha, many other stimuli including several oncoproteins can activate JNK1. In most cases, the signaling cascade(s) leading from oncoproteins to JNK1 is poorly elucidated. We report here that the human T-cell lymphotrophic virus, type I (HTLV-I) oncoprotein, Tax, can activate JNK1. We isolated a novel human cell factor, G-protein pathway suppressor 2 (GPS2), by its ability to bind the HTLV-I oncoprotein, and we show that this factor can potently suppress Tax activation of JNK1. In trying to understand the mechanism of GPS2 activity, we found that it also suppressed TNFalpha activation of JNK1 but not TNFalpha activation of p38 kinase nor phorbol activation of extracellular signal-regulated kinase 2. Because GPS2 has minimal effect on MEKK1- or SEK-regulated JNK1 activity, it could act at a point between the TNFalpha receptor and MEKK1 in the initial step(s) of this kinase cascade. Alternatively, it is not excluded that GPS2 could work in a parallel pathway that leads from TNFalpha to JNK1. GPS2 represents a new molecule that could contribute important insights toward how cytokine- and oncoprotein-mediated signal transduction might converge.  相似文献   

13.
14.
Fluid shear stress modulates vascular function and structure by stimulating mechanosensitive endothelial cell signal events. Cell adhesion, mediated by integrin-matrix interactions, also regulates intracellular signaling by mechanosensitive events. To gain insight into the role of integrin-matrix interactions, we compared tyrosine phosphorylation and extracellular signal-regulated kinase (ERK1/2) activation in adhesion- and shear stress-stimulated human umbilical vein endothelial cells (HUVEC). Adhesion of HUVEC to fibronectin, but not to poly-L-lysine, rapidly activated ERK1/2. Fluid shear stress (12 dyn/cm2) enhanced ERK1/2 activation stimulated by adhesion, suggesting the presence of a separate pathway. Two differences in signal transduction were identified: focal adhesion kinase phosphorylation was increased rapidly by adhesion but not by shear stress; and ERK1/2 activation in response to adhesion was inhibited to a significantly greater extent when actin filaments were disrupted by cytochalasin D. Two similarities in activation of ERK1/2 were observed: protein kinase C (PKC) activity was necessary as shown by complete inhibition when PKC was downregulated; and an herbimycin-sensitive (genistein- and tyrphostin-insensitive) tyrosine kinase was required. c-Src was identified as a candidate tyrosine kinase as it was activated by both shear stress and adhesion. These findings suggest that adhesion and shear stress activate ERK1/2 via a shared pathway that involves an herbimycin-sensitive tyrosine kinase and PKC. In addition, shear stress activates ERK1/2 through another pathway that is partially independent of cytoskeletal integrity.  相似文献   

15.
16.
The small GTP-binding proteins Ras, Rac, and Cdc42 link protein-tyrosine kinases with mitogen-activated protein kinase (MAPK) signaling cascades. Ras controls the activation of extracellular signal-regulated kinases (ERKs), while Rac and Cdc42 regulate the c-Jun N-terminal kinases (JNKs). In this study, we investigated whether small G protein/MAPK cascades contribute to signal transduction by transforming variants of c-Fes, a nonreceptor tyrosine kinase implicated in cytokine signaling and myeloid differentiation. First, we investigated the effects of dominant-negative small G proteins on Rat-2 fibroblast transformation by a retroviral homolog of c-Fes (v-Fps) and by c-Fes activated via N-terminal addition of the v-Src myristylation signal (Myr-Fes). We observed that dominant-negative Ras, Rac, and Cdc42 inhibited v-Fps- and Myr-Fes-induced growth of Rat-2 cells in soft agar, indicating that activation of these small GTP-binding proteins is required for fibroblast transformation by Fps/Fes tyrosine kinases. To determine whether MAPK pathways are activated downstream of these small G proteins, we measured ERK and JNK activity in the v-Fps- and Myr-Fes-transformed Rat-2 cells. Both ERK and JNK activities were elevated in the transformed cells, suggesting that these pathways are involved in cellular transformation. Dominant-negative mutants of Ras (but not Rac or Cdc42) specifically inhibited ERK activation by v-Fps and Myr-Fes, demonstrating that ERK activation occurs exclusively downstream of Ras. All three dominant-negative small G proteins inhibited JNK activation by v-Fps and Myr-Fes, indicating that JNK activation by these tyrosine kinases requires both Ras and Rho family GTPases. These data demonstrate that multiple small G protein/MAPK cascades are involved in downstream signal transduction by Fps/Fes tyrosine kinases.  相似文献   

17.
Many receptors that couple to heterotrimeric guanine-nucleotide binding proteins (G proteins) have been shown to mediate rapid activation of the mitogen-activated protein kinases Erk1 and Erk2. In different cell types, the signaling pathways employed appear to be a function of the available repertoire of receptors, G proteins, and effectors. In HEK-293 cells, stimulation of either alpha1B- or alpha2A-adrenergic receptors (ARs) leads to rapid 5-10-fold increases in Erk1/2 phosphorylation. Phosphorylation of Erk1/2 in response to stimulation of the alpha2A-AR is effectively attenuated by pretreatment with pertussis toxin or by coexpression of a Gbetagamma subunit complex sequestrant peptide (betaARK1ct) and dominant-negative mutants of Ras (N17-Ras), mSOS1 (SOS-Pro), and Raf (DeltaN-Raf). Erk1/2 phosphorylation in response to alpha1B-AR stimulation is also attenuated by coexpression of N17-Ras, SOS-Pro, or DeltaN-Raf, but not by coexpression of betaARK1ct or by pretreatment with pertussis toxin. The alpha1B- and alpha2A-AR signals are both blocked by phospholipase C inhibition, intracellular Ca2+ chelation, and inhibitors of protein-tyrosine kinases. Overexpression of a dominant-negative mutant of c-Src or of the negative regulator of c-Src function, Csk, results in attenuation of the alpha1B-AR- and alpha2A-AR-mediated Erk1/2 signals. Chemical inhibitors of calmodulin, but not of PKC, and overexpression of a dominant-negative mutant of the protein-tyrosine kinase Pyk2 also attenuate mitogen-activated protein kinase phosphorylation after both alpha1B- and alpha2A-AR stimulation. Erk1/2 activation, then, proceeds via a common Ras-, calcium-, and tyrosine kinase-dependent pathway for both Gi- and Gq/11-coupled receptors. These results indicate that in HEK-293 cells, the Gbetagamma subunit-mediated alpha2A-AR- and the Galphaq/11-mediated alpha1B-AR-coupled Erk1/2 activation pathways converge at the level of phospholipase C. These data suggest that calcium-calmodulin plays a central role in the calcium-dependent regulation of tyrosine phosphorylation by G protein-coupled receptors in some systems.  相似文献   

18.
Mitogen-activated protein kinase (MAPK) is activated in response to both receptor tyrosine kinases and G-protein-coupled receptors. Recently, Gi-coupled receptors, such as the alpha 2A adrenergic receptor, were shown to mediate Ras-dependent MAPK activation via a pathway requiring G-protein beta gamma subunits (G beta gamma) and many of the same intermediates involved in receptor tyrosine kinase signaling. In contrast, Gq-coupled receptors, such as the M1 muscarinic acetylcholine receptor (M1AChR), activate MAPK via a pathway that is Ras-independent but requires the activity of protein kinase C (PKC). Here we show that, in Chinese hamster ovary cells, the M1AChR and platelet-activating factor receptor (PAFR) mediate MAPK activation via the alpha-subunit of the G(o) protein. G(o)-mediated MAPK activation was sensitive to treatment with pertussis toxin but insensitive to inhibition by a G beta gamma-sequestering peptide (beta ARK1ct). M1AChR and PAFR catalyzed G(o) alpha-subunit GTP exchange, and MAPK activation could be partially rescued by a pertussis toxin-insensitive mutant of G(o) alpha but not by similar mutants of Gi. G(o)-mediated MAPK activation was insensitive to inhibition by a dominant negative mutant of Ras (N17Ras) but was completely blocked by cellular depletion of PKC. Thus, M1AChR and PAFR, which have previously been shown to couple to Gq, are also coupled to G(o) to activate a novel PKC-dependent mitogenic signaling pathway.  相似文献   

19.
MAP kinase (MAPK) cascades are composed of a MAPK, MAPK kinase (MAPKK), and a MAPKK kinase (MAPKKK). Despite the existence of numerous components and ample opportunities for crosstalk, most MAPKs are specifically and distinctly activated. We investigated the basis for specific activation of the JNK subgroup of MAPKs. The specificity of JNK activation is determined by the MAPKK JNKK1, which interacts with the MAPKKK MEKK1 and JNK through its amino-terminal extension. Inactive JNKK1 mutants can disrupt JNK activation by MEKK1 or tumor necrosis factor (TNF) in intact cells only if they contain an intact amino-terminal extension. Mutations in this region interfere with the ability of JNKK1 to respond to TNF but do not affect its activation by physical stressors. As JNK and MEKK1 compete for binding to JNKK1 and activation of JNKK1 prevents its binding to MEKK1, activation of this module is likely to occur through sequential MEKK1:JNKK1 and JNKK1:JNK interactions. These results underscore a role for the amino-terminal extension of MAPKKs in determination of response specificity.  相似文献   

20.
We have added constitutively active MAP kinase/ERK kinase (MEK), an activator of the mitogen-activated protein kinase (MAPK) signaling pathway, to cycling Xenopus egg extracts at various times during the cell cycle. p42MAPK activation during entry into M-phase arrested the cell cycle in metaphase, as has been shown previously. Unexpectedly, p42MAPK activation during interphase inhibited entry into M-phase. In these interphase-arrested extracts, H1 kinase activity remained low, Cdc2 was tyrosine phosphorylated, and nuclei continued to enlarge. The interphase arrest was overcome by recombinant cyclin B. In other experiments, p42MAPK activation by MEK or by Mos inhibited Cdc2 activation by cyclin B. PD098059, a specific inhibitor of MEK, blocked the effects of MEK(QP) and Mos. Mos-induced activation of p42MAPK did not inhibit DNA replication. These results indicate that, in addition to the established role of p42MAPK activation in M-phase arrest, the inappropriate activation of p42MAPK during interphase prevents normal entry into M-phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号