首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
张燕  赵会民  刘作军  杨鹏 《红外与激光工程》2018,47(8):830002-0830002(8)
动力型下肢假肢的主要功能是帮助截肢患者实现独立自如的行走,为了使假肢能够配合用户的运动,需要对用户的运动意图进行识别。通过提前获知用户前方环境信息,将其作为运动意图识别的先验知识,可以提高运动意图的识别精度。为了给动力型下肢假肢提供前方环境信息,设计了一种可穿戴的地形识别系统。首先通过安装在人体腰部的二维激光雷达收集前方地形数据,然后利用凝聚分层聚类算法对采集的数据进行线性特征提取,最后利用有限状态自动机对前方地形进行识别。实验中,对平地过渡到上/下斜坡、上/下楼梯四种地形进行了测试。结果表明,该系统不仅对四种地形的识别精度达到了95.8%,还可以计算出传统的运动意图识别方法无法得到的地形参数信息,包括斜坡的坡度、楼梯的阶数和台阶的高度与宽度。这证明了将该系统应用于动力型下肢假肢的有效性和可行性。  相似文献   

2.
随着人口老龄化的到来,为了避免发生意外事故,对老人日常活动行为进行识别和监测的安全监护系统的需求不断增长.传统的基于摄像头拍摄或者穿戴式传感器的活动状态监测系统存在着隐私保护和使用不方便等不足.为此,本文设计一种基于红外阵列传感器的人体行为识别系统.该系统通过检测环境中的温度分布和变化情况识别人体行为,不需要在老人身上佩戴任何设备,尺寸小易于安装,在黑暗环境中可正常工作,且由于采集到的是低分辨率信息,不会造成隐私泄露,对比传统方案具有明显优势.从采集到的温度分布信息中提取特征并采用K最近邻(K-Nearest Neighbor,KNN)算法实现了\  相似文献   

3.
在分析可穿戴型下肢助力机器人所需要的控制信息的基础上,设计了一套基于CAN总线的人体下肢运动信息感知系统。该系统主要包括可获取人体腿部和脚底状态的力传感器和获取髋关节和踝关节角度信息的编码器。实验结果表明,所设计的多传感器系统稳定,实时性好,满足可穿戴型下肢助力机器人系统控制的需要。  相似文献   

4.
在分析可穿戴型下肢助力机器人所需要的控制信息的基础上,设计了一套基于CAN总线的人体下肢运动信息感知系统.该系统主要包括可获取人体腿部和脚底状态的力传感器和获取髋关节和踝关节角度信息的编码器.实验结果表明,所设计的多传感器系统稳定,实时性好,满足可穿戴型下肢助力机器人系统控制的需要.  相似文献   

5.
可穿戴型下肢助力机器人感知系统研究   总被引:2,自引:0,他引:2  
在分析可穿戴型下肢助力机器人所需要的控制信息的基础上,设计了一套基于CAN总线的人体下肢运动信息感知系统。该系统主要包括可获取人体腿部和脚底状态的力传感器和获取髋关节和踝关节角度信息的编码器。实验结果表明,所设计的多传感器系统稳定,实时性好,满足可穿戴型下肢助力机器人系统控制的需要。  相似文献   

6.
柔性可穿戴传感器因柔软轻便、延展性强且可用于健康管理、环境监测、食品检测、储能器件等领域而备受关注,基于激光诱导石墨烯的柔性可穿戴传感器克服了传统可穿戴设备的不足,其制备过程具有单步原位制备、绿色环保、低成本等优势,符合新型便携式/可穿戴电子产品向着智能化、微型化、高集成度、柔性化方向发展的趋势,具有良好的发展前景。本文首先阐述了石墨烯的传统制备工艺与激光诱导石墨烯的优缺点;然后分析了碳前体、激光器类型、激光参数、掺杂改性等影响因素对激光诱导石墨烯的结构和性能的影响;接着介绍了激光诱导石墨烯在柔性应变传感器、柔性生理传感器、柔性化学传感器等方面的应用研究;最后,对其应用前景进行了展望。  相似文献   

7.
针对于水下蛙人训练过程中脉搏信息的监测需求,开发一种水下蛙人可穿戴式脉搏监测设备。首先,进行脉搏监测设备系统构架、工作原理及工作模式的设计与分析。其次,提出一种基于ARM(Advanced RISC Machine,ARM)架构和MAX30102传感器的脉搏监测设备硬件系统设计方案。再次,对脉搏监测设备的值班控制、脉搏检测、状态监测功能模块软件进行详细描述。最后,通过实验对脉搏监测设备的多工作模式与任务管理、脉搏信号采集与存储、状态监测等功能进行测试。实验结果表明,水下可穿戴式脉搏监测设备能够满足水下蛙人脉搏监测的需求。  相似文献   

8.
鉴于当前的睡眠监测设备存在佩戴复杂、设备昂贵、功能单一和检测方法不合理等情况,设计了一种多传感器数据融合的睡眠监测系统.本系统以STM32F407ZGT6为核心主控芯片,通过可穿戴式背心传感器将所采集到的人体特征信号进行处理、存储和发送到手机App端,针对单一传感器检测可靠性较差的特点,本系统采用了多传感器进行采集分析...  相似文献   

9.
基于面阵CCD的激光告警系统的图像采集与处理   总被引:2,自引:2,他引:0       下载免费PDF全文
光栅衍射型激光告警系统是一种基于光栅衍射效应、可实时探测来袭激光参量信息的光电对抗设备。为了获取入射激光的波长和入射角度,以光栅衍射效应为基本原理,采用面阵CCD进行图像采集、数字信号处理器进行图像处理,并依据信号特点开发了目标识别算法。通过理论分析和实验验证,设计出了一套基于面阵CCD的光栅衍射型激光告警系统的图像采集与处理系统,实现了对激光目标的探测。结果表明,该系统可有效地识别来袭激光并准确标记,具有良好的稳定性、实时性。  相似文献   

10.
王大巍 《电子技术》2010,47(7):21-22
语音口令识别是语音信息处理的一个重要研究方向,本文给出一种基于嵌入式系统的语音口令识别系统的设计方案,硬件系统的核心芯片是嵌入式微处理器,语音口令识别算法采用连续隐马尔克夫模型。实验结果表明,将语音识别系统与嵌入式系统相结合,可以使语音口令识别系统广泛应用于便携式设备中。  相似文献   

11.
Triboelectric nanogenerators (TENGs) are a promising technology to convert mechanical energy to electrical energy based on coupled triboelectrification and electrostatic induction. With the rapid development of functional materials and manufacturing techniques, wearable and implantable TENGs have evolved into playing important roles in clinic and daily life from in vitro to in vivo. These flexible and light membrane‐like devices have the potential to be a new power supply or sensor element, to meet the special requirements for portable electronics, promoting innovation in electronic devices. In this review, the recent advances in wearable and implantable TENGs as sustainable power sources or self‐powered sensors are reviewed. In addition, the remaining challenges and future possible improvements of wearable and implantable TENG‐based self‐powered systems are discussed.  相似文献   

12.
Smart wearable electronics that are fabricated on light‐weight fabrics or flexible substrates are considered to be of next‐generation and portable electronic device systems. Ideal wearable and portable applications not only require the device to be integrated into various fiber form factors, but also desire self‐powered system in such a way that the devices can be continuously supplied with power as well as simultaneously save the acquired energy for their portability and sustainability. Nevertheless, most of all self‐powered wearable electronics requiring both the generation of the electricity and storing of the harvested energy, which have been developed so far, have employed externally connected individual energy generation and storage fiber devices using external circuits. In this work, for the first time, a hybrid smart fiber that exhibits a spontaneous energy generation and storage process within a single fiber device that does not need any external electric circuit/connection is introduced. This is achieved through the employment of asymmetry coaxial structure in an electrolyte system of the supercapacitor that creates potential difference upon the creation of the triboelectric charges. This development in the self‐charging technology provides great opportunities to establish a new device platform in fiber/textile‐based electronics.  相似文献   

13.
Digital health facilitated by wearable/portable electronics and big data analytics holds great potential in empowering patients with real‐time diagnostics tools and information. The detection of a majority of biomarkers at trace levels in body fluids using mobile health (mHealth) devices requires bioaffinity sensors that rely on “bioreceptors” for specific recognition. Portable point‐of‐care testing (POCT) bioaffinity sensors have demonstrated their broad utility for diverse applications ranging from health monitoring to disease diagnosis and management. In addition, flexible and stretchable electronics‐enabled wearable platforms have emerged in the past decade as an interesting approach in the ambulatory collection of real‐time data. Herein, the technological advancements of mHealth bioaffinity sensors evolved from laboratory assays to portable POCT devices, and to wearable electronics, are synthesized. The involved recognition events in the mHealth affinity biosensors enabled by bioreceptors (e.g., antibodies, DNAs, aptamers, and molecularly imprinted polymers) are discussed along with their transduction mechanisms (e.g., electrochemical and optical) and system‐level integration technologies. Finally, an outlook of the field is provided and key technological bottlenecks to overcome identified, in order to achieve a new sensing paradigm in wearable bioaffinity platforms.  相似文献   

14.
The challenges of growing and aging populations combined with limited clinical resources have created huge demand for wearable and portable healthcare devices. Research advances in wearable biosensors have made it easier to achieve reliable noninvasive monitoring of health and body status. In this review, recent progress in the development of body computing systems for personalized healthcare is presented, with key considerations and case studies. Critical form factors for wearable sensors, their materials, structures, power sources, modes of data communication, and the types of information they can extract from the body are summarized. Statistically meaningful data analysis considerations, including using cohort and longitudinal correlation studies, are reviewed to understand how raw sensor signals can provide actionable information on the state of the body. This informs discussions on how collected sensor data can be used for personalized and even preventative care, such as by guiding closed-loop medical interventions. Finally, outstanding challenges for making wearable sensor systems reliable, practical, and ubiquitous are considered in order to disrupt traditional medical paradigms with personalized and precision care.  相似文献   

15.
Mechanical failure along a conductive pathway can cause unexpected shutdown of an electronic devices, ultimately limiting the device lifetime. To address this problem, various systems to realize healable electrical conductors have been proposed; however, rapid, noninvasive, and on‐demand healing, factors that are all synergistically required, especially for wearable device applications, still remains challenging. Here, a light‐powered healable electrical conductor (conceptualized as photofluidic diffusional system) is proposed for simple‐, fast‐, and easy‐to‐implement wearable devices (e.g., the electronic skin, sensitive to mechanical motion). Contrary to other implementations such as capsules, heat, water, and mechanical forces, green light even with low intensity has potential to provide fast (less than 3 min) and repetitive recovery of a damaged electrical conductor without any direct invasion. Also, the multiple, irregular cracks resulting from vigorous motions of wearable devices can be simultaneously recovered regardless of the light incident angles and crack propagation directions, thus, making light‐powered healing more accessible to wearable devices beyond existing system options. To develop and demonstrate the key concepts of this system, combined studies on materials, integrations, and light‐powering strategy for recovering a damaged wearable electrical conductor are systematically carried out in the present work.  相似文献   

16.
Wearable devices have emerged in the last years with new applications that provide user convenience. Healthcare, sports, safety are some examples of areas in which wearable devices have been used. This paper overviews wearable architectures found in the literature and presents a novel wearable for monitoring ecological environments. The wearable includes a Head-UP Display (HUD) assembled with Google Cardboard API and sensors connected to a development board. Our wearable device provides several functionalities such as distance measurement to objects and weather conditions monitoring. Camera and green lasers combined with a digital image processing algorithm are used to measure the distance to objects. We different development boards to build the system.  相似文献   

17.
Self‐healing triboelectric nanogenerators (TENGs) with flexibility, robustness, and conformability are highly desirable for promising flexible and wearable devices, which can serve as a durable, stable, and renewable power supply, as well as a self‐powered sensor. Herein, an entirely self‐healing, flexible, and tailorable TENG is designed as a wearable sensor to monitor human motion, with infrared radiation from skin to promote self‐healing after being broken based on thermal effect of infrared radiation. Human skin is a natural infrared radiation emitter, providing favorable conditions for the device to function efficiently. The reversible imine bonds and quadruple hydrogen bonding (UPy) moieties are introduced into polymer networks to construct self‐healable electrification layer. UPy‐functionalized multiwalled carbon nanotubes are further incorporated into healable polymer to obtain conductive nanocomposite. Driven by the dynamic bonds, the designed and synthesized materials show excellent intrinsic self‐healing and shape‐tailorable features. Moreover, there is a robust interface bonding in the TENG devices due to the similar healable networks between electrification layer and electrode. The output electric performances of the self‐healable TENG devices can almost restore their original state when the damage of the devices occurs. This work presents a novel strategy for flexible devices, contributing to future sustainable energy and wearable electronics.  相似文献   

18.
In the field of bionics, sophisticated and multifunctional electronic skins with a mechanosensing function that are inspired by nature are developed. Here, an energy‐harvesting electronic skin (energy‐E‐skin), i.e., a pressure sensor with energy‐harvesting functions is demonstrated, based on fingerprint‐inspired conducting hierarchical wrinkles. The conducting hierarchical wrinkles, fabricated via 2D stretching and subsequent Ar plasma treatment, are composed of polydimethylsiloxane (PDMS) wrinkles as the primary microstructure and embedded Ag nanowires (AgNWs) as the secondary nanostructure. The structure and resistance of the conducting hierarchical wrinkles are deterministically controlled by varying the stretching direction, Ar plasma power, and treatment time. This hierarchical‐wrinkle‐based conductor successfully harvests mechanical energy via contact electrification and electrostatic induction and also realizes self‐powered pressure sensing. The energy‐E‐skin delivers an average output power of 3.5 mW with an open‐circuit voltage of 300 V and a short‐circuit current of 35 µA; this power is sufficient to drive commercial light‐emitting diodes and portable electronic devices. The hierarchical‐wrinkle‐based conductor is also utilized as a self‐powered tactile pressure sensor with a sensitivity of 1.187 mV Pa‐1 in both contact‐separation mode and the single‐electrode mode. The proposed energy‐E‐skin has great potential for use as a next‐generation multifunctional artificial skin, self‐powered human–machine interface, wearable thin‐film power source, and so on.  相似文献   

19.
Energy‐harvesting electronic skin (E‐skin) is highly promising for sustainable and self‐powered interactive systems, wearable human health monitors, and intelligent robotics. Flexible/stretchable electrodes and robust energy‐harvesting components are critical in constructing soft, wearable, and energy‐autonomous E‐skin systems. A stretchable energy‐harvesting tactile interactive interface is demonstrated using liquid metal nanoparticles (LM‐NPs)‐based electrodes. This stretchable energy‐harvesting tactile interface relies on triboelectric nanogenerator composed of a galinstan LM‐NP‐based stretchable electrode and patterned elastic polymer friction and encapsulation layer. It provides stable and high open‐circuit voltage (268 V), short‐circuit current (12.06 µA), and transferred charges (103.59 nC), which are sufficient to drive commercial portable electronics. As a self‐powered tactile sensor, it presents satisfactory and repeatable sensitivity of 2.52 V·kPa?1 and is capable of working as a touch interactive keyboard. The demonstrated stretchable and robust energy‐harvesting E‐skin using LM‐NP‐based electrodes is of great significance in sustainable human–machine interactive system, intelligent robotic skin, security tactile switches, etc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号