首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 62 毫秒
1.
针对复杂彩色图像提出一种快速有效的人脸检测算法。首先通过一种新的色彩均衡技术消除由光照引起的色彩偏移,然后采用HSI空间与归一化RGB空间相结合的混合肤色模型,提取出原图像中的类肤色区域,最后根据人脸的几何特征定位眼睛、嘴巴和人脸区域。实验结果表明,该算法能较为准确地定位彩色图像中的正面或小角度偏转的人脸,具有较快的检测速度。  相似文献   

2.
王岩红 《电视技术》2012,36(3):125-127,133
利用一种基于肤色的2D Gaussian模型和一定的先验知识实现了人脸快速检测。首先对一幅图像进行去噪、光线补偿等预处理,然后根据颜色空间特性建立适宜的肤色模型,检测出大致的肤色轮廓,对面部特征根据先验知识实现定位,从而剔除非脸部区域,最后对该算法进行实验验证。实验表明,该算法可以实现人脸的快速检测,降低了误报率,具有一定的优越性。  相似文献   

3.
针对传统的人脸检测方法存在算法复杂、鲁棒性差以及精确度低等不足,提出一种基于肤色分割与几何特征的人脸检测算法。首先,将人脸彩色图像进行光照补偿预处理与非线性转换,建立YCb Cr颜色空间肤色模型同时融合人脸几何特征进行粗定位;然后,在人脸区域内,依据眼睛与嘴巴的色度特性分割出眼睛与嘴巴的特征区域并确定各自特征点的中心位置;最后利用眼睛,嘴巴的几何关系构建三角形精确定位人脸。实验结果表明,该算法简单,在速度与准确性方面具有良好的性能。  相似文献   

4.
基于模糊聚类的肤色分割   总被引:3,自引:0,他引:3  
肤色是彩色图像人脸检测中一个非常重要的特征。通常采用一个统计模型分割出可能的肤色区域,但往往会有很多误判。此外,CbCr等简单的二维空间,不能表示真正的肤色分布。该文提出采用三维的CrCbCg模型来更精确地描述肤色分布,同时考虑到一幅图像中肤色区域内颜色点的分布具有相对稳定的特点,利用一种模糊聚类的方法对CrCbCg模型的输出结果进行二次分割,进一步去除非肤色点。由于结合了每幅图像自身的特点,该算法能大大提高肤色分割结果的准确性。大量实验结果表明,该算法能有效处理95%以上的彩色图像,对于70%以上的图像可得到很好的分割结果。  相似文献   

5.
文章采用YCb Cr肤色模型对肤色区域进行判断提取得到肤色候选区域,并对候选区域采用区域填充率方法对明显的非人脸区域进行判断并删除,之后对分割肤色进行二值化处理并采用空间聚类的方法进一步对判断的噪声即非人脸区域进行消除,之后融合人工免疫算法优化肤色区域的聚类算法,提高人脸区域辨识度。  相似文献   

6.
人脸检测是人脸识别的第一环节,也是非常关键的环节。试验中主要针对静态彩色图像进行人脸检测,研究肤色在人脸检测中的应用。不同图像背景、人脸的可变性和光照条件变化都增加了人脸检测的难度。因此,从一幅图像中检测人脸是一项具有挑战性的任务。采用Adaboost的人脸检测,并提出肤色与Adaboost算法相结合的人脸检测方法。对输入的彩色图像进行从RGB空间到YCbCr空间的转换,然后进行肤色分割,排除背景干扰,最后用Adaboost算法对可能区域进行检测,得到人脸位置。实验表明,该方法误检率低,鲁棒性好,对人脸检测有较强的实用性。  相似文献   

7.
杨琳  管业鹏   《电子器件》2007,30(5):1716-1719
人脸检测广泛应用到人脸识别、数字视频处理、安全访问控制、视觉监测、基于内容的检索等领域.比较众多人脸检测算法,文章提出了一种改进的基于Adaboost算法的人脸检测算法.该算法的核心是肤色分割结合基于Adaboost算法的人脸检测.首先,对彩色图像进行肤色分割,通过肤色区域的大小和长宽比等规则去除部分类肤色区域,得到可疑的人脸区域.其次,基于Adaboost算法的灰度特征得到最终的人脸.通过大量彩色图像的实验,证实了该方法的准确性和鲁棒性.  相似文献   

8.
张莉  汪烈军  钟森海 《激光与红外》2013,43(12):1402-1405
传统的人脸检测方法对于复杂背景彩色图像中人脸区域检测效果不理想。本文首先对不同光照条件下的输入图像进行光补偿和图像增强的预处理,然后利用HS-CbCrCg颜色空间建立肤色模型对图像进行肤色判别,之后用改进的Adaboost算法检测肤色区域的人脸信息,最后对重点区域重检测判别出确信人脸。实验数据表明,此方法对比传统的人脸检测方法,处理速度更快同时能够降低人脸漏检率和误检率。  相似文献   

9.
针对人脸检测问题中快速性与准确性难以同时满足的情况,提出了一种将肤色和脸部特征相结合的方法来检测人脸.由于通过基于肤色的算法能快速定位出人脸大致位置,因而检测速度能达到实时的要求;同时利用脸部特征进一步细检,可保证检测的精确性.  相似文献   

10.
为解决当被检测图像中具有复杂背景或者含有多人脸时,不能够快速准确的进行人脸检测的问题,本文提出一种基于肤色分割和改进AdaBoost算法的人脸检测方法。首先利用肤色分割方法对样本图像实现图像的预处理,排除样本图像的复杂背景和人体非肤色区域,简化后续的人脸检测工作。然后对AdaBoost算法的弱分类器使用双阈值判决方法,以减少弱分类器个数,提升训练速度;改进权值更新规则,防止训练过程中出现过分配现象。最后对基于肤色分割得到的区域图像利用改进后的Adaboost算法进行最后的精确人脸检测。仿真试验表明,两种算法结合后在训练速度上提升,在检测速度和检测率上有明显提高。  相似文献   

11.
李鹏 《电子技术》2009,(10):66-67
针对传统的ASM(主动形状模型)与AAM(主动外观模型)方法的缺陷与不足,提出了一种改进的方法。在改进算法中,将局部特征模型和全局纹理模型有机结合,使其融合传统的主动形状局部模型、全局纹理形状约束和参数优化过程。实验结果表明,改进算法的定位能力更加健壮,并具有更高的准确性。  相似文献   

12.
彩色图像人脸特征点定位算法研究   总被引:2,自引:0,他引:2       下载免费PDF全文
吴证  周越  杜春华  袁泉  戈新良 《电子学报》2008,36(2):309-313
本文提出了一种基于复合局部信息模型的改进Active Shape Model(ASM)算法,并进一步提出了基于人脸特征点Gabor小波特征降维分类的特征点搜索方法,对改进ASM的结果进行精确校正,达到鲁棒精确定位特征点的目的.本文首先对经过Adaboost检测的彩色图像人脸区域进行光照补偿,然后根据眼睛和唇色的色度特性定位双眼和嘴唇中心位置,从而得到较好的人脸特征点的初始位置.在特征点位置搜索中,本文结合肤色概率信息对ASM方法进行了改进,从而提高了仅基于灰度梯度信息的传统ASM方法的鲁棒性和准确性.最后选取改进ASM搜索后的某些特征点一定领域内梯度值较高的点,提取其Gabor小波特征,通过线性判别式分析法(Linear Discriminant Analysis)和最近邻分类法对其进行分类,搜寻最符合训练样本Gabor特征的点作为最佳位置点,修正了ASM的搜索结果,使得搜寻结果更加精确.  相似文献   

13.
针对复杂背景下彩色图像中的人脸检测,研究一种基于非线性分段色彩变换、肤色模型和FCM动态聚类算法的检测方法.算法首先进行颜色空间映射及非线性分段色彩变换,再利用肤色分布模型,对肤色似然度图像进行自适应的肤色分割,进一步采用线段编码从分割后的图像中提取区域特征向量,最后利用FCM动态聚类方法,从复杂背景中检测出人脸区域.实验证明,该方法具有较高的准确性和适应性.  相似文献   

14.
一种新的基于直接最小二乘椭圆拟合的肤色检测方法   总被引:1,自引:0,他引:1  
肤色检测是计算机视觉中的一个重要问题,本文提出了一种新的基于直接最小二乘椭圆拟合的肤色检测方法,其基本思想是根据肤色样本分布区域的边界数据点采用曲线拟合的方法得到肤色分布区域的边界方程。在实现时,为了解决直接在笛卡儿坐标系中提取肤色样本分布区域边界数据的困难,算法采用了一种新的解决思路,即首先把训练肤色样本在色度空间的统计分布转化为图像的形式,然后再利用边缘检测方法得到肤色分布区域的边界数据。根据所得的边界数据点用直接最小二乘椭圆拟合方法便可得到肤色分布区域的椭圆边界,方法简单直观。实践表明,该算法能完成对各种不同环境条件下所拍摄图像的肤色分割,效果理想,其性能明显优于常用的域值界定法和单高斯模型法。  相似文献   

15.
人脸的检测是一个非常复杂的问题,对它的许多规律和规则进行显性的描述是相当困难的.文中提出一种基于肤色和边缘信息的人脸检测方法.该方法充分利用了人脸肤色的统计知识,首先利用肤色模型和边缘信息对人脸进行初定位,形成肤色区域,然后利用区域的特性例如紧凑性、坚固性、长宽比等来验证该肤色区域是否存在人脸.实验证明,该方法可以有效地运用于多人脸、不同尺寸、表情姿态和复杂背景的情况,具有较好的检测结果,还可以用于实时的人脸跟踪中.  相似文献   

16.
AMethodforHeadshoulderSegmentationandHumanFacialFeaturePositioningHuTianjianCaiDejunDepartmentofElectricalandInformationEngi...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号