首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
目的初步探索由聚苯胺/磷酸锌有机-无机复合钝化填料和环氧-聚硅氧烷树脂制备的自修复涂层的修复和防腐性能。方法采用微区交流阻抗技术(LEIS)、扫描电子显微技术(SEM)和电化学阻抗技术(EIS),研究了聚苯胺/磷酸锌/聚硅氧烷复合涂层的防腐性能和在人工损伤部位的修复功能。结果由微区电化学阻抗和电化学阻抗测试可知,环氧-聚硅氧烷清漆具有自修复和优异的耐蚀性能;偶联剂处理的聚苯胺/磷酸锌有机-无机复合钝化填料(HCE),可显著提升环氧-聚硅氧烷涂层的自修复和耐蚀性能。当HCE的添加量为0.3%(以占环氧-聚硅氧烷涂料质量的百分比计)时,涂层的自修复和耐蚀性能最佳,缺陷部位修复后的阻抗值最大达到70 k?,是环氧-聚硅氧烷清漆的9倍。涂层阻抗值随浸泡时间的延长而增加,浸泡3750 h时,涂层阻抗值增至10~(11)?·cm~2。结论当涂层产生缺陷时,一方面聚苯胺/磷酸锌有机-无机复合填料发生氧化还原反应,生成新的氧化膜;另一方面,聚苯胺与环氧-聚硅氧烷树脂发生交联固化反应,在基体缺陷处成膜,提高了涂层的致密性;二者协同作用使HCE3涂层试样具有最佳的耐蚀性能和自修复功能。  相似文献   

2.
为提高环氧涂层在腐蚀环境下的防腐性和持久性,合成一种负载有缓蚀剂苯并三唑(BTA)的苯并三唑@磺化聚苯胺功能化倍半硅氧烷(BTA@SPANI-POSS),随后将BTA@SPANI-POSS与环氧树脂共混得到BTA@SPANI-POSS环氧涂料,最后在Q235碳钢上制备数种复合环氧涂层。通过红外光谱、紫外可见光谱、扫描电子显微镜对BTA@SPANI-POSS的结构、缓蚀性能、表面形貌进行表征,利用接触角测量仪、电化学工作站研究所制备涂层的疏水性能和防腐性能。研究表明,随着SPANI-POSS的添加,涂层沾湿性能降低。电化学阻抗谱(EIS)和塔菲尔极化曲线测试结果表明,与SPANI-POSS环氧涂层相比,负载有BTA的BTA@SPANI-POSS环氧涂层对金属基底具有更高和更持久的保护能力,其中试样EB1.5%的腐蚀电流密度icorr为16.67?A·cm-2,其极化电阻Rp为2.467 M?·cm2,具有较低的腐蚀动态速率。在3.5 wt.%NaCl溶液中浸泡15 d后环氧涂层仍具有良好的防腐蚀效果,其阻抗值Z0.01Hz仍保留有第1 d时的2...  相似文献   

3.
采用水热法合成了氧化锌(ZHM)中空微米球,通过浸渍法得到负载罗丹明B酰肼(RHBH)的氧化锌微球(ZHM-RHBH),采用红外光谱(FT-IR)对其结构进行表征。将ZHM-RHBH掺杂到环氧树脂中,在Q235碳钢基体上制备功能涂层,利用动电位极化曲线和电化学阻抗谱(EIS)考察了ZHM-RHBH对涂层缺陷处金属腐蚀的作用。结果表明,掺杂于涂层中的ZHM-RHBH不仅能够通过荧光响应指示涂层缺陷还可以抑制涂层缺陷处的腐蚀。  相似文献   

4.
目的开发一种能够在热硫酸介质中长期保护316L不锈钢的新型复合涂层。方法使用化学氧化法制备一次掺杂聚苯胺(PANI),通过脱掺杂-二次掺杂制备十二烷基苯磺酸(DBSA)掺杂的二次掺杂聚苯胺,并添加环氧树脂(EP)作为成膜剂制备PANI/EP复合涂层。通过傅里叶变换红外光谱(FT-IR)、扫描电子显微镜(SEM)和X射线能谱(EDS)等方法,对材料的官能团、结构和形貌进行表征,用电化学测试法和划痕浸泡实验测试PANI/EP复合涂层的耐蚀性能,并对复合涂层的保护机理进行探讨。结果在50、60℃的1mol/L硫酸溶液中,PANI/EP复合涂层试样的自腐蚀电位相对不锈钢显著提高,其中50℃时提高了560 mV,60℃时提高了450m V,均达到不锈钢的钝化电位,阳极极化曲线电流密度下降了两个数量级。电化学交流阻抗测试表明,涂覆涂层后,试样的阻抗模值明显增大。划痕浸泡试验表明,在50℃的1 mol/L硫酸溶液中浸泡一周后,PANI/EP复合涂层试样没有发生脱落,且划痕处几乎没有腐蚀,主要原因是涂层促使不锈钢表面生成了稳定的钝化膜。结论在中温硫酸溶液中,PANI/EP复合涂层对不锈钢同时提供物理屏蔽作用和阳极保护作用,有良好的防腐蚀保护效果。  相似文献   

5.
目的将负载缓蚀剂植酸钠的多孔壳聚糖微球添加到水性聚丙烯酸涂层中,研究涂层改性后的防腐蚀性能。方法利用油包水(W/O)乳化固化法制备壳聚糖微球,通过扫描电子显微镜(SEM)、傅里叶变换红外光谱(FT-IR)、X射线衍射(XRD)研究微球的形貌性征。利用负压-浸渍法将缓蚀剂植酸钠负载到壳聚糖微球中,并利用热重分析(TGA)研究缓蚀剂的负载率。将负载缓蚀剂的微球按照质量分数5%添加到水性涂层中,利用电化学阻抗谱(EIS)研究涂层改性后的防腐蚀性能。结果 SEM图像表明,壳聚糖微球成球性良好,粒径为20~30μm。FT-IR及XRD结果表明,交联剂香草醛通过希夫碱反应以及氢键作用对壳聚糖进行交联,使得壳聚糖微球固化,并且结晶度降低。TGA结果表明,缓蚀剂植酸钠的负载率为25.79%。EIS结果表明,经负载缓蚀剂的壳聚糖微球改性后的水性聚丙烯酸涂层电荷转移电阻增加。结论水性聚丙烯酸涂层中的多孔壳聚糖控制植酸钠的释放,提高了缓蚀剂的利用率,改性后的涂层防腐蚀性能得到了提高。  相似文献   

6.
目的提高5182铝合金表面耐蚀性能及其与漆膜的结合力。方法采用KH550硅烷试剂在5182铝合金表面制备硅烷涂层,同时探究不同浸泡时间、溶液pH值和固化温度对硅烷涂层结构和性能的影响,并优化硅烷涂层的制备工艺。采用扫描电子显微技术(SEM)、接触角试验仪和拉曼光谱研究硅烷涂层的结构和成分。采用电化学阻抗谱(EIS)技术评价涂层的耐蚀性能。采用涂层附着力自动划痕仪评价硅烷涂层对有机漆膜结合力的影响。结果浸泡时间180 s、溶液pH值11、固化温度90℃为5182铝合金表面硅烷涂层的最佳制备工艺,该工艺条件下制备的硅烷涂层均匀、致密地覆盖于铝合金基体表面,厚度约为100 nm。在Na_2B_4O_7×10H_2O和NaOH水溶液中,硅烷处理试样的低频阻抗值比未硅烷处理试样高约2个数量级,硅烷处理样品与漆膜的结合力明显优于未经过硅烷处理的试样。结论采用优化工艺制备的硅烷涂层能改善5182铝合金的耐蚀性能。当硅烷涂层作为中间层存在时,显著提高了有机涂层与合金基体的结合强度。  相似文献   

7.
国泰榕  卢小鹏  李岩  张涛  王福会 《表面技术》2021,50(9):278-285, 310
目的 为进一步提高镁稀土合金微弧氧化涂层的耐蚀性能.方法 首先在镁稀土合金表面制备了微弧氧化涂层,随后用磷酸盐后处理溶液,对Mg-Gd-Y合金硅酸盐微弧氧化涂层进行了封孔后处理,并在此过程中添加了缓蚀剂.利用扫描电子显微镜(SEM)和X射线衍射仪(XRD)对涂层表面形貌和成分进行分析,利用极化曲线和电化学阻抗(EIS)测试了涂层的耐蚀性能.结果 后处理能够在微弧氧化涂层表面形成MgHPO4沉积层,沉积层的产生有效地封闭了微弧氧化涂层表面的微孔、裂纹等缺陷.缓蚀剂的添加显著增加了沉积物的量,使涂层的磷元素原子数分数由5.37%增加至14.90%,沉积效果显著.极化实验证明,封孔后处理涂层的腐蚀电流密度由1.51×10–7 A/cm2降至4.91×10–8 A/cm2,负载缓蚀剂后,涂层的腐蚀电流密度进一步降低至5.76×10–9 A/cm2,表明其耐蚀性能显著提高.微弧氧化涂层在3.5%NaCl溶液中浸泡384 h后,含缓蚀剂的涂层的总阻抗值可达7825.3?·cm2,明显高于未封孔处理的微弧氧化涂层(403?·cm2),这证明,后处理可有效提高微弧氧化涂层的耐蚀性能.结论 磷酸盐后处理能够在微弧氧化涂层表面生成MgHPO4沉积层,有效地对微弧氧化涂层表面的微孔和微裂纹进行了封闭.缓蚀剂的添加能够显著增强磷酸盐的沉积效果,使涂层的耐蚀性能在后处理的基础上进一步提高.  相似文献   

8.
以氟碳面漆、丙烯酸聚氨酯面漆、环氧玻璃鳞片胶泥中间漆、铝合金防腐底漆和底面合一铝合金专用防腐漆为原料,采用不同的配套方案在2A12铝合金表面制备了有机复合涂层,通过扫描电子显微镜(SEM)、中性盐雾实验、极化曲线测试和电化学阻抗谱(EIS)测试对有机复合涂层的耐蚀性能和耐蚀机理进行了研究。结果表明:有机复合涂层与2A12铝合金基体之间,以及有机复合涂层中各层之间均结合良好;中性盐雾腐蚀30 d后各有机复合涂层仍具有表面光泽,没有出现开裂和剥落;(底漆+中间漆+氟碳面漆)方案的有机复合涂层耐蚀性能最佳,使腐蚀电流密度下降了3个数量级,极化电阻上升了3个数量级,阻抗值提升约2个数量级。  相似文献   

9.
采用电化学极化与电化学阻抗谱及浸泡试验等方法,研究了316L不锈钢表面电镀钯膜在94℃的10%H2SO4+250g/L Na2SO4+16g/L ZnSO4溶液中的耐蚀性能。结果表明,电镀钯使不锈钢的腐蚀电位大幅提高700mV,促进了不锈钢表面的钝化,使其耐蚀性能得到明显提高。当体系中加入一定浓度的氯离子(100~1 000mg·L)后,镀钯试样的自腐蚀电位仍然处于316L不锈钢的钝化电位区间,阻抗值明显下降,其腐蚀速率比不锈钢试样的腐蚀速率显著下降,表明含氯条件下表面镀钯仍可明显提高不锈钢的耐蚀性能。  相似文献   

10.
目的 研究钢基镍磷合金PTFE复合涂层的耐磨性能及耐蚀作用机理.方法 在钢基材料表面制备镍磷合金镀层,采用电化学蚀刻技术在镀层表面形成纳米多孔结构,并经PTFE复合改性处理,制备了耐磨耐蚀的复合涂层.采用扫描电子显微镜对钢基镍磷合金PTFE复合涂层的微观形貌进行了表征,分别采用球盘式磨损、电化学试验评价了复合涂层的耐磨损、耐蚀性能,并通过白光干涉仪对复合涂层的磨痕形貌进行了分析.结果 复合改性涂层未改变镍磷合金镀层硬度性质.在球盘摩擦磨损试验中,随摩擦时间的延长,镍磷合金镀层的摩擦系数从0.12持续升至0.40;复合改性涂层的摩擦系数从0.08升至0.20左右,并保持稳定,与镀层相比,其摩擦系数有效降低,耐磨性能提高.由极化曲线可得,复合改性涂层的腐蚀电流最低,为1.53μA,且出现一个钝化区间.通过电化学阻抗谱图与等效电路拟合结果可知,镍磷合金镀层0.01 Hz的整体阻抗模值为1.44×104?·cm2,经复合改性后,镀层在0.01 Hz时的整体阻抗增加为2.75×104?·cm2.结论 电化学蚀刻+PTFE复合改性处理能有效提高镍磷合金镀层的耐蚀耐磨性能.  相似文献   

11.
Nowadays, surface modification with self-healing ability is a valuable technique to improve chemical stability, oxidation behaviour and corrosion resistance of materials without interference with its physical, chemical or mechanical properties of bulk material underneath. In this paper, hybrid organic amorphous titania coatings are deposited on 7075 aluminium alloy substrates by using the sol–gel method. A titania–benzotriazole (BTA) nanostructured hybrid sol–gel coating is impregnated with three different high concentrations of BTA, 1.4, 2.8 and 4.2%. The bonds existing in the hybrid coating, structure and morphology and coating corrosion behaviour have been studied using the FTIR, GIXRD, field emission scanning electron microscopy and electrochemical impedance spectroscopy (EIS) test in a 3.5?wt-% NaCl solution during different immersion times, 24, 48, 72, 96 and 120?h. EIS studies indicated that a higher coating resistance value was gained for titania–4.2% BTA even after 120?h of immersion and BTA acted mainly on the amorphous titania coating as a corrosion inhibitor and a healing agent that acts by two mechanisms: first, release of a healing agent to the formation of corrosion products, then finally blocking surface defects; second, release of a healing agent during 48?h of immersion and its adsorption to produce an insulating layer on the surface of the coating in contact with the solution.  相似文献   

12.
Sol–gel method under dip coating process and tetra‐n‐butyle orthotitanate as precursor were used to produce titanium oxide coating on steel CK45. The effect of calcination at 400 °C, after drying at 120 °C, on the morphology and corrosion performance of the coatings was investigated. Benzotriazole (BTA) as an inhibitor was doped on titanium oxide coatings to improve corrosion performance of the coatings as well as its self‐healing properties. The morphology and structure of the coatings were studied by X‐ray diffraction (XRD), scanning electron microscope (SEM), and energy dispersive X‐ray spectroscopy (EDS) techniques. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques were used to study the corrosion behavior of the coatings. The results revealed that after calcination the dominant crystalline phase was anatase. The results obtained from potentiodynamic polarization curves and electrochemical impedance spectra showed that the calcinated and doped with BTA coatings possessed higher corrosion resistance than non‐calcinated although doped with BTA coatings.  相似文献   

13.
One kind of conventional and two kinds of nanostructured Al2O3‐13%TiO2 coatings were prepared by plasma spray process. The phase composition and microstructure of coatings were examined by means of scanning electron microscopy (SEM) and X‐ray diffraction (XRD). The potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) were used to investigate the corrosion behavior of coatings in aqueous hydrochloric acid solution. The results showed that nanostructured coatings had superior corrosion resistance compared to conventional Metco 130 coating. The corrosion resistance of coatings was mainly related to their microstructure and defects density. The EIS measurement for long time immersion in hydrochloric acid solution revealed that the corrosion resistance of coatings decreased with the increasing of immersion time. During the immersion period, electrochemical corrosion mainly occurred on the carbon steel substrate under NiCrAl coatings. In addition, the Al2O3‐13%TiO2 coatings were also failed during corrosion in aqueous hydrochloric acid solution.  相似文献   

14.
热浸Zn-Ti合金镀层的耐腐蚀性能   总被引:1,自引:1,他引:0  
桂艳 《表面技术》2008,37(5):33-35
为了抑制热镀锌过程中因含硅活性钢引起的镀层超厚生长,采用在纯锌浴中加Ti的方法,研究了热浸Zn-Ti合金镀层的耐蚀性能.采用浸泡腐蚀、电化学极化、交流阻抗以及X射线光电子能谱等方法,研究了热浸Zn-Ti合金镀层的耐蚀性能.结果表明:Zn-Ti舍金镀层在5%NaCl溶液中的自发腐蚀倾向小于Zn镀层,其极化电阻和交流阻抗增大,腐蚀电流密度减小,耐蚀性能提高.Zn-Ti镀层表面形成的氧化膜由ZnO和TiO2组成.Zn-Ti合金镀层的耐腐蚀性能优于纯锌镀层是由于在镀层表面形成了更加稳定的TiO2膜.  相似文献   

15.
The corrosion behavior of a NdFeB magnet obtained at room temperature,with and without ultrasonic were investigated.The corrosion resistance was investigated by corrosion immersion tests in 3 wt%neutral NaCl solutions,potentiodynamic polarization tests and electrochemical impedance spectroscopy(EIS).The morphology of the conversion coatings on NdFeB surface were analyzed by scanning electron microscopy(SEM).And the forming mechanism of coatings was studied by potential-time curves.The tests of corrosion resistances show that the combination of phosphating treatment with ultrasonic will further improve the corrosion resistance of the NdFeB.The SEM also confirms that phosphating coating under ultrasonic is more homogeneous and compact.  相似文献   

16.
反应等离子喷涂TiN涂层热处理后的电化学腐蚀性能   总被引:2,自引:0,他引:2  
研究了热处理后TiN涂层在模拟海水中的腐蚀行为,采用电化学阻抗谱(EIS)、动电位极化曲线、扫描电镜和能谱分析等技术研究了热处理后TiN涂层电化学腐蚀参数及组织的变化。结果表明:热处理后TiN涂层的耐蚀性明显提高,自腐蚀电流仅为热处理前的13.3%,极化电阻约是热处理前的20倍;电化学阻抗谱描绘了热处理后涂层的腐蚀过程及导致涂层腐蚀的主要因素,涂层局部的孔隙腐蚀是引起电化学腐蚀参数变化的主要因素,腐蚀初期孔隙电阻由大变小,后期又会由小变大,从而使涂层的腐蚀速率发生变化;热处理会使涂层的通孔率降低为87%,主要原因是在热处理过程,TiN与大气中的O2发生了氧化反应,生成密度较TiN小的TiO2相和Ti3O相,使涂层中的部分通孔被封闭,耐蚀性得以提高。  相似文献   

17.
采用电化学阻抗谱技术(EIS)研究了环氧铝粉涂层和FEVE氟碳涂层/碳钢体系在天然海水介质中的电化学腐蚀行为,通过对两涂层的涂层电容分析及腐蚀后表面形貌的观察,评价了两种有机涂层的防腐蚀性能。结果表明,随着浸泡时间的延长,两种有机涂层体系的保护作用都有所降低。环氧铝粉涂层在浸泡初期呈现单容抗弧特征,浸泡57天时出现了双容抗弧。氟碳涂层在浸泡周期内EIS曲线均呈现单容抗弧特征,浸泡110天时低频阻抗模值仍高于108Ω.cm2。在整个浸泡周期内,氟碳涂层的涂层电容基本维持在1.6×10-10~1.8×10-10 F.cm-2,约为环氧铝粉涂层电容的1/20,表现出低渗水性。  相似文献   

18.
为了实现涂层破损的高效自修复,将纳米氮化钛与热塑性聚氨酯混合,制备了不同氮化钛含量的复合涂层。 利用扫描电子显微镜(SEM)、X 射线衍射仪(XRD)和紫外可见分光光度计(UV-Vis)分析了氮化钛的结构和光谱吸收特征;利用差示扫描量热仪(DSC)、热电偶、光学显微镜、扫描电子显微镜( SEM)、交流阻抗谱(EIS)等对复合涂层的热力学性能、光热转换性能、自修复性能及防腐性能进行测试。 结果表明:基于纳米氮化钛的表面等离激元特性,在热塑性聚氨酯中添加质量分数为 2%的氮化钛后,复合涂层具有良好的光热转换性能,在近红外激光照射后其表面温度高于聚氨酯的玻璃化转变温度。 当涂层表面有划口时,通过激光照射可以提高涂层的局部温度,使聚合物分子链运动并流向划痕界面,复合涂层的结构和防腐性能均得到恢复,并且修复后涂层中氮化钛仍分布均匀。 此外,氮化钛纳米颗粒还有助于填补涂层的微观孔隙,使复合涂层的防腐性能提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号