首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
We have previously demonstrated that the most rostral part of the subventricular zone (SVZ) is a source of neuronal progenitor cells whose progeny are destined to become interneurons of the olfactory bulb. To determine whether the number of newly generated neurons in the adult olfactory bulb could be increased by the administration of an exogenous factor, brain-derived neurotrophic factor (BDNF) was infused for 12 days into the right lateral ventricle of adult rat brains. The production of new cells was monitored by either the intraventricular infusion or intraperitoneal injection of the cell proliferation marker BrdU. In both experimental paradigms we observed significantly more BrdU-labeled cells in the olfactory bulbs on the BDNF-infused side than in the olfactory bulb of PBS-infused animals. Analysis of the BDNF-infused brains of animals injected intraperitoneally with BrdU demonstrated a 100% increase in the number of BrdU-labeled cells in the bulb, the preponderance ( approximately 90%) of which were double-labeled with a neuron-specific antibody. These results demonstrate that the generation and/or survival of new neurons in the adult brain can be increased substantially by an exogenous factor. Furthermore, the SVZ, and in particular the rostral part, may constitute a reserve pool of progenitor cells available for neuronal replacement in the diseased or damaged brain.  相似文献   

2.
During an entire lifetime, sensory axons of regenerating olfactory receptor neurons can enter glomeruli in the olfactory bulb and establish synaptic junctions with central neurons. The role played by astrocytes in this unique permissiveness is still unclear. Glomerular astrocytes have been identified by immunocytochemistry for glial fibrillary acidic protein and S100 proteins at the light and electron microscopic levels. The latter labeling included submicroscopic lamellar and filopodial extensions of astroglial processes. Cell bodies and processes accumulate along the border between juxtaglomerular walls and glomerular neuropil. Within glomeruli, a network of astroglial processes encloses mesh-like neuropil zones devoid of astroglia. Electron microscopy confirmed the division into subcompartments of glomerular neuropil: 1) The "sensory-synaptic subcompartment" includes all sensory axon terminals and terminal dendritic branches receiving sensory input, whereas astroglia are excluded; 2) in the "central-synaptic subcompartment," astroglial processes are intermingled with other neuropil components: dendrites of relay cells and interneurons, dendrodendritic synapses, centrifugal (cholinergic and serotonergic) axons, their axodendritic synapses, and blood vessels. Unevenly distributed astroglial processes in this subcompartment are attached to vascular basal laminae, stem dendrites, and subpopulations of dendrodendritic synapses, especially those colocalized with centrifugal projections ("triadic synapses"). Astroglia-free parts of the "central" subcompartment contain segments of dendrites and subpopulations of dendrodendritic synapses. Because of the subdivision of the glomerular neuropil into portions with and without glial components, glia do not completely demarcate the border between the "sensory" and the "central" subcompartments. Interdigitation between the subcompartments varies among glomeruli and even within a single glomerulus. The mesh width of astroglial networks covaries with numerical relations between sensory and dendrodendritic synapses. This distribution pattern of astrocytes suggests that these glial cells monitor brain-derived effects on olfactory glomerular neuropil rather than olfactory input and that astroglial processes are (re-)arranged accordingly.  相似文献   

3.
NADPH-d histochemistry was used to investigate presumptive nitric oxide synthase (NOS)-containing neurons in the crayfish olfactory midbrain. Three anatomically different types of local olfactory interneurons exhibiting NADPH-d activity were observed: two pairs of large interneurons as well as positively stained globuli cells. Branches derived from the large interneurons were confined to the ipsilateral olfactory lobe and accessory lobe, but only a few branches innervated the olfactory lobe glomeruli. Local field potential recordings on the olfactory lobe showed that administration of SNP or SIN-1 (10-4 M) into the brain had reversible inhibitory effects on electrically-evoked responses of unidentified neuronal cell populations.  相似文献   

4.
An in vitro slice culture was established for investigating olfactory neural development. The olfactory epithelium was dissected from embryonic day 13 rats; 400 microns slices were cultured for 5 days in serum-free medium on Millicell-CM membranes coated with different substrates. The slices were grown in the absence of their appropriate target, the olfactory bulb, or CNS derived glia. The cultures mimic many features of in vivo development. Cells in the olfactory epithelium slices differentiate into neurons that express olfactory marker protein (OMP). OMP-positive cells have the characteristic morphology of olfactory receptor neurons: a short dendrite and a single thin axon. The slices support robust axon outgrowth. In single-label experiments, many axons expressed neural specific tubulin, growth-associated protein 43 and OMP. Axons appeared to grow equally well on membranes coated with type I rat tail collagen, laminin or fibronectin. The cultures exhibit organotypic polarity with an apical side rich in olfactory neurons and a basal side supporting axon outgrowth. Numerous cells migrate out of the slices, of which a small minority was identified as neurons based on the expression of neural specific tubulin and HuD, a nuclear antigen, expressed exclusively in differentiated neurons. Most of the migrating cells, however, were positive for glial fibrillary acidic protein and S-100, indicating that they are differentiated glia. A subpopulation of these glial cells also expressed low-affinity nerve growth factor receptors, indicating that they are olfactory Schwann cells. Both migrating neurons and glia were frequently associated with axons growing out of the slice. In some cases, axons extended in advance of migrating cells. This suggests that olfactory receptor neurons in organotypic cultures require neither a pre-established glial/neuronal cellular terrain nor any target tissue for successful axon outgrowth. Organotypic olfactory epithelial slice cultures may be useful for investigating cellular and molecular mechanisms that regulate early olfactory development and function.  相似文献   

5.
To scrutinize the common belief that the number of neurons in the CNS of adult decapod crustaceans stays constant, in spite of their dramatic postlarval increase in size, I counted olfactory projection neurons (OPNs) in the brains of differently-sized postlarval shore crabs, Carcinus maenas, and performed in vivo labeling of proliferating cells with 5-bromo-2'-deoxyuridine (BrdU) on brains of adults. The number of OPNs increases continuously throughout the postlarval life of shore crabs and approximately doubles from the very young to the oldest animals. Brain sections from adult crabs labeled with BrdU revealed ongoing proliferation of cells in the lateral soma cluster, which consists of OPN cell bodies, and in the cluster of somata of hemiellipsoid body local interneurons, which are the targets of the OPNs. Post-injection survival times from 5.5 to 120 h revealed a small but relatively constant number of labeled nuclei with neuronal morphology in both soma clusters of all specimens (31.3 +/- 9.5 S.D. nuclei per lateral cluster, n = 29; 20.1 +/- 4.5 S.D. nuclei per hemiellipsoid body cluster, n = 10). The labeled nuclei were located in a distinct proliferative zone in each cluster. There were significantly more labeled nuclei in both soma clusters after a prolonged post-injection survival time of 1 month (71.3 +/- 7.8 S.D. nuclei per lateral cluster, n = 4; 38.2 +/- 7.1 nuclei per hemiellipsoid body cluster, n = 6). In both soma clusters the labeled nuclei formed a compact group that was dislocated from the proliferation zone towards the outer edge of the cluster. In the proliferation zone of the lateral cluster histological stainings revealed cell bodies of typical neuronal shape that are slightly smaller and more intensely stained than the surrounding OPN somata. Some of these cell bodies were captured in various stages of mitosis. Collectively, these data indicate that continuous neurogenesis occurs in the central olfactory pathway of the brain of shore crabs throughout their entire adult life. This unexpected structural plasticity may enable long-lived decapod crustaceans to adapt to ever-changing olfactory environments.  相似文献   

6.
The anatomy of 61 of the smallest interneurons in the brain of the locust shows the same tendency toward uniqueness, contancy of neuropil abortizations, and frequency of occurrence of supernumerary cells as does that of 17 large interneurons; the size and number of neurons thus have no obligatory relation to the concept of the unique identifiable neuron.  相似文献   

7.
The central projections of the cold receptor axons were examined by filling two types of cold receptive sensilla with cobalt lysine--a cold and hygroreceptive (C/H) sensillum and a cold receptive and olfactory (C/O) sensillum--on the antennae of the cockroach, Periplaneta americana L. When the dye filled a single C/H sensillum, four axons were stained. Three of these axons terminate in the ipsilateral antennal lobe, while the other branches in the ipsilateral dorsal lobe. One of the branches passed through the tritocerebrum to terminate in the suboesophageal ganglion, while the other branches end in the lobe. When a single C/O sensillum is dye filled, all axons of the four receptor neurons terminate exclusively in the ipsilateral antennal lobe. One axon from the C/H sensillum and one axon from the C/O sensillum terminate in a particular glomerulus in the ventroposterior region of the antennal lobe. Each of these axons also has a tuft in separate glomeruli situated just dorsal to the glomerulus in which both axons terminate. This set of three glomeruli have indistinct boundaries and appear to form a complex of glomeruli similar to the macroglomerular complex of male moths. Assuming modality-specific convergence of antennal afferents, these axons appear to belong to the cold receptor neurons, and the set of glomeruli appear to function in cold reception. Two other neurons stained from C/H sensilla always terminate in the glom-eruli distinct from the set of glomeruli mentioned earlier. These neurons are assigned to the pair of hygroreceptor neurons, and their glomeruli are thought to function in hygroreception.  相似文献   

8.
9.
Our previous studies have demonstrated that the primary olfactory projection in rainbow trout is organized nontopographically; the pattern of termination of olfactory axons in the olfactory bulb is unrelated to the distribution of their cell bodies in the olfactory mucosa. In the present research we have further characterized the organization of this projection by examining the lectin-binding properties of olfactory receptor neurons. The results indicate that in trout, as in mammals, populations of olfactory receptor neurons differ significantly from one another in their carbohydrate "signatures." We have identified subsets of olfactory receptor neurons, specified by unique lectin-binding properties, that are widely distributed and intermingled with the other receptor neurons in the olfactory mucosa and nerve, but that segregate as they enter the olfactory bulb and project to restricted regions of the glomerular layer. This pattern of terminations is bilaterally symmetrical, is remarkably consistent across individuals, and reappears when the primary olfactory projection is reconstituted following transection of the olfactory nerve. As revealed by the carbohydrates on subpopulations of receptor neurons, there is substantial order in the nontopographic projection of olfactory receptor neurons to the olfactory bulb. The functional significance of this organization and the means by which it develops and is maintained remain under investigation.  相似文献   

10.
Localization of metabotropic glutamate receptor subtypes, mGluR1, mGluR1alpha, mGluR2/3, mGluR4a, mGluR5, mGluR7a, mGluR7b, and mGluR8, was examined in some of the target areas of projection fibers from the main and accessory olfactory bulbs (MOB and AOB) by using subtype-specific antibodies. The superficial layer of the olfactory tubercle and layer Ia of the piriform cortex, the target areas of MOB, showed marked mGluR1-, mGluR5-, mGluR7a-, and mGluR8-like immunoreactivities (-LI), and rather weak mGluR2/3-LI. The periamygdaloid cortical region including the target areas of both MOB and AOB showed intense mGluR2/3-LI as well as marked mGluR1-, mGluR5-, mGluR7a-, and mGluR8-LI. No significant mGluR1alpha-, mGluR4a-, or mGluR7b-LI was seen in these regions. After transection of the lateral olfactory tract, mGluR2/3-, mGluR7a-, and mGluR8-LI were reduced markedly in the target regions on the side ipsilateral to the transection; no significant changes were detected in mGluR1- or mGluR5-LI. Double labeling experiments indicated light and electron microscopically colocalization of mGluR7a- and mGluR8-LI in axon terminals on dendritic shafts of presumed interneurons in the superficial layer of the olfactory tubercle and layer Ia of the piriform cortex. Electron microscopically mGluR2/3-LI was seen in preterminal and terminal portions of axons, whereas mGluR7a- and mGluR8-LI were associated with presynaptic membrane specialization. Immunolabeled axon terminals were filled with round synaptic vesicles and constituted asymmetric synapses with dendritic profiles. The results suggest that glutamate release from axon terminals of projection fibers from MOB and AOB is regulated presynaptically and differentially through mGluR2/3, mGluR7a, and/or mGluR8.  相似文献   

11.
Olfactory sensory neurons expressing a given odorant receptor project to two topographically fixed glomeruli in the olfactory bulb. We have examined the contribution of different cell types in the olfactory bulb to the establishment of this topographic map. Mice with a homozygous deficiency in Tbr-1 lack most projection neurons, whereas mice with a homozygous deficiency in Dlx-1 and Dlx-2 lack most GABAergic interneurons. Mice bearing a P2-IRES-tau-lacZ allele and deficient in either Tbr-1 or Dlx-1/Dlx-2 reveal the convergence of axons to one medial and one lateral site at positions analogous to those observed in wild-type mice. These observations suggest that the establishment of a topographic map is not dependent upon cues provided by, or synapse formation with, the major neuronal cell types in the olfactory bulb.  相似文献   

12.
Antiserum to leucokinin I, a neuropeptide originally isolated from the cockroach Leucophaea maderae, was used for immunocytochemical labeling of neurons in the brain and ventral ganglia of the moth Spodoptera litura during postembryonic development. In the ventral ganglia, leucokinin-like immunoreactivity begins to occur in the abdominal ganglion A3 to A7 of first instar larva. One to two weakly labeled pairs of bilateral LK-LI cell bodies are located in the subesophageal ganglion of fourth to sixth instar larvae and in the abdominal ganglia A1 to A7 of second to sixth instar larvae. The abdominal ganglion A1 of fourth to sixth instar larvae and A8 of sixth instar larva each contain one weakly labeled pair of median LK-LI cell bodies. Two strongly labeled pairs of bilateral LK-LI neurons are found in A3 to A7 of third to sixth instar larvae. Abdominal ganglia A1 to A8 of prepupa, pupa and adult contain one to three weakly labeled pairs of bilateral LK-LI neurons. Two strongly labeled pairs of bilateral LK-LI neurons in each of the abdominal ganglia of larva, prepupa, pupa and adult send axons to the neuropil, and then each axon bifurcates into two axonal branches. Theses axonal branches from two bundles. From each of the two pairs of neurons an axon exits through the posterior ventral nerve (N2) which runs to the transverse nerve of the next posterior segment. In larval brains, 2-16 pairs of bilateral LK-LI cell bodies can be found together with LK-LI processes in the central neuropil. The larval brains show large changes in the number of LK-LI neurons throughout postembryonic development. The number of LK-LI cell bodies are reduced in number from sixth instar larval brain. Therefore, prepupal, pupal and adult brains contain a smaller number of LK-LI cell bodies. Two pairs of LK-LI median neurosecretory cells located immediately beside the pars intercerebralis in larval brains increase to three pairs in the 7-day-old pupal brain. In the adult, however, LK-LI median neurosecretory cells decrease to one pair.  相似文献   

13.
Voltage-sensitive dyes NK 2761 and RH 155 were employed (in conjunction with a 12 x 12 photodiode array) to study membrane potential transients in optic lobe neuropils in the eye stalk of the crayfish Procambarus clarkii. By this means we investigated a pathway linking deutocerebral projection neurons, via hemiellipsoid body local interneurons, to an unidentified target (most likely neurons processing visual information) in the medulla terminalis. Rapid (10- to 20-ms duration), transient changes in absorption with the characteristics of action potentials were recorded from the optic nerve and the region occupied by deutocerebral projection neurons after stimulation of the olfactory globular tract in the optic nerve and were blocked by 1 microM tetrodotoxin. Action potentials appeared to propagate to the glomerular layer of the hemiellipsoid body where synaptic responses were recorded from a restricted region of the hemiellipsoid body occupied by dendrites of hemiellipsoid body neurons. Action potentials were also recorded from processes of hemiellipsoid body neurons located in the medulla terminalis. Synaptic responses in the hemiellipsoid body and medulla terminalis were eliminated by addition to the saline of 500 microM Cd2+ or 20 mM Co2+, whereas the action potential attributed to branches of deutocerebral projection neurons in the hemiellipsoid body remained unaffected. Action potentials of hemiellipsoid body neurons in the medulla terminalis evoked postsynaptic potentials (50- to 200-ms duration) with an unidentified target in the medulla terminalis. Transient absorption signals were not detected in either the internal or external medulla nor were they recorded from other parts of the optic lobes in response to electrical stimulation of axons of the deutocerebral projection neurons. Functional maps of optical activity, together with electrophysiological and pharmacological findings, suggest that gamma-aminobutyric acid affects synaptic transmission in glomeruli of the hemiellipsoid body. Synapses of the olfactory pathway located in the medulla terminalis may act as a "filter," modifying visual information processing during olfactory stimulation.  相似文献   

14.
Subsets of neurons ensheathed by perineuronal nets containing chondroitin unsulfated proteoglycan have been immunohistochemically mapped throughout the rat central nervous system from the olfactory bulb to the spinal cord. A variable proportion of neurons were outlined by immunoreactivity for the monoclonal antibody (Mab 1B5), but only after chondroitinase ABC digestion. In forebrain cortical structures the only immunoreactive nets were around interneurons; in contrast, throughout the brainstem and spinal cord a large proportion of projection neurons were surrounded by intense immunoreactivity. Immunoreactivity was ordinarily found in the neuropil between neurons surrounded by an immunopositive net. By contrast, within the pyriform cortex the neuropil of the plexiform layer was intensely immunoreactive even though no perineuronal net could be found. The presence of perineuronal nets could not be correlated with any single class of neurons; however a few functionally related groups (e.g., motor and motor-related structures: motor neurons both in the spinal cord and in the efferent somatic nuclei of the brainstem, deep cerebellar nuclei, vestibular nuclei; red nucleus, reticular formation; central auditory pathway: ventral cochlear nucleus, trapezoid body, superior olive, nucleus of the lateral lemniscus, inferior colliculus, medial geniculate body) were the main components of the neuronal subpopulation displaying chondroitin unsulfated proteoglycans in the surrounding extracellular matrix. The immunodecorated neurons found in the present study and those shown by different monoclonal antibodies or by lectin cytochemistry, revealed consistent overlapping of their distribution patterns.  相似文献   

15.
A subpopulation of neurons in the globus pallidus projects to the neostriatum, which is the major recipient of afferent information to the basal ganglia. Given the moderate nature of this projection, we hypothesized that the pallidostriatal projection might exert indirect but powerful control over principal neuron activity by targeting interneurons, which comprise only a small percentage of neostriatal neurons. This was tested by the juxtacellular labeling and recording of pallidal neurons in combination with immunolabeling of postsynaptic neurons. In addition to innervating the subthalamic nucleus and output nuclei, 6 of 23 labeled pallidal neurons projected to the neostriatum. Both the firing characteristics and the extent of the axonal arborization in the neostriatum were variable. However, light and electron microscopic analysis of five pallidostriatal neurons revealed that each neuron selectively innervated neostriatal interneurons. A large proportion of the boutons of an individual axon (19-66%) made contact with parvalbumin-immunoreactive interneurons. An individual parvalbumin-immunoreactive neuron (n = 27) was apposed on average by 6.7 boutons (SD = 6.1) from a single pallidal axon (n = 2). Individual pallidostriatal boutons typically possessed more than one symmetrical synaptic specialization. In addition, 3-32% of boutons of axons from four of five pallidal neurons contacted nitric oxide synthase-immunoreactive neurons. Descending collaterals of pallidostriatal neurons were also found to make synaptic contact with dopaminergic and GABAergic neurons of the substantia nigra. These data imply that during periods of cortical activation, individual pallidal neurons may influence the activity of GABAergic interneurons of the neostriatum (which are involved in feed-forward inhibition and synchronization of principle neuron activity) while simultaneously patterning neuronal activity in basal ganglia downstream of the neostriatum.  相似文献   

16.
Expression of p75 neurotrophin receptor and survival of medium-sized spiny projection neurons and cholinergic interneurons in the rat striatum were studied using immunocytochemistry at different times after transient, unilateral middle cerebral artery occlusion. Thirty minutes of middle cerebral artery occlusion caused a major loss of projection neurons, identified by their immunoreactivity to dopamine- and adenosine 3':5'-monophosphate-regulated phosphoprotein with a molecular weight of 32,000, in the lateral part of the striatum, as observed at 48 h following the insult with no further change at one week. In contrast, no reduction of the number of choline acetyltransferase-positive, cholinergic interneurons, which also expressed TrkA, was detected at either time-point. At 48 h following middle cerebral artery occlusion, expression of p75 neurotrophin receptor was observed in striatal cells which, by the use of double-label immunostaining, were identified as the cholinergic interneurons. No p75 neurotrophin receptor immunoreactivity remained in cholinergic cells after one week of reperfusion. Based on current hypotheses regarding the function of the p75 neurotrophin receptor, the transient expression of this receptor in striatal cholinergic interneurons might contribute to their high resistance to ischemic neuronal death. However, the expression of p75 neurotrophin receptor could also be a first step in a pathway leading to apoptosis, which is inhibited after the present insult due to concomitant activation of TrkA.  相似文献   

17.
Previous studies have demonstrated that the calcium-binding protein parvalbumin, is located within a population of GABAergic interneurons in the neostriatum of the rat. Anatomical studies have revealed that these cells receive asymmetrical synaptic input from terminals that are similar to identified cortical terminals and that they innervate neurons with the ultrastructural features of medium spiny cells. Furthermore, electrophysiological studies suggest that some GABAergic interneurons in the neostriatum receive direct excitatory input from the cortex and inhibit medium spiny cells following cortical stimulation. The main objectives of the present study were (i) to determine whether parvalbumin-immunoreactive neurons in the rat receive direct synaptic input from the cortex, (ii) to determine whether parvalbumin-immunopositive axon terminals innervate identified striatal projection neurons and (iii) to chemically characterize this anatomical circuit at the fine structural level. Rats received stereotaxic injections of biocytin in the frontal cortex or injections of neurobiotin in the substantia nigra. Following an appropriate survival time, the animals were perfused and the brains were sectioned and treated to reveal the transported tracers. Sections containing the neostriatum were treated for simultaneous localization of the transported tracer and parvalbumin immunoreactivity. Tracer deposits in the cortex gave rise to massive terminal and fibre labelling in the neostriatum. Parvalbumin-immunoreactive elements located within fields of anterogradely labelled terminals were examined in the electron microscope and corticostriatal terminals were found to form asymmetrical synaptic specializations with all parts of parvalbumin-immunoreactive neurons that were examined. Tracer deposits in the substantia nigra produced retrograde labelling of a subpopulation of striatonigral neurons. Areas of the neostriatum and nucleus accumbens containing retrogradely labelled neurons and parvalbumin-immunoreactive structures were selected for electron microscopy. Parvalbumin-immunopositive axon terminals formed symmetrical synaptic specializations with the perikarya of retrogradely labelled medium spiny projection neurons. Postembedding immunocytochemistry for GABA revealed that parvalbumin-immunoreactive boutons in synaptic contact with medium spiny neurons were GABA-positive. These data demonstrate directly a neural circuit whereby cortical information may be passed to medium spiny cells, via GABAergic interneurons, in the form of inhibition and provide an anatomical substrate for the feed-forward inhibition that has been detected in spiny neurons in electrophysiological experiments.  相似文献   

18.
The antennal lobes (ALs), the primary olfactory centers, of the moth Manduca sexta are sexually dimorphic. Only ALs of males possess the macroglomerular complex (MGC), the site of primary processing of information about the female's sex pheromone. To understand the development of identified, odor-specific olfactory glomeruli, we investigated the cellular events involved in the morphogenesis of the MGC by means of various fluorescence staining techniques and laser-scanning confocal microscopy. The MGC lies near the entrance of the antennal nerve into the AL of the adult male and comprises three glomeruli, the globular cumulus and two toroidal structures. The MGC forms during early stages of metamorphic adult development through a stereotyped sequence of coordinated changes in MGC-specific receptor axons, glial cells, and early-ingrowing projection neurons of the medial group of AL neurons. The MGC divisions are the earliest glomeruli to form in the male AL, and their basic organization is established within about 3 days after ingrowth of the first sensory axons. Despite their special anatomical features, the MGC glomeruli develop in a manner similar to that of the ordinary glomeruli. Comparison of the ALs of males and females reveals that two relatively large and early-developing glomeruli that are situated dorsolaterally in the female AL appear to be female-specific. Development of the sexually dimorphic glomeruli diverges immediately after the ingrowth of the first olfactory receptor axons, resulting in the formation of these large glomeruli in females and the MGC in males.  相似文献   

19.
Two-color immunofluorescence histochemistry and immunohistochemistry in combination with retrograde tract-tracing techniques were used to examine the relationship of alpha-amino-3-hydroxy-5-methyl-4-isoxazole proprionic acid (AMPA)-selective glutamate receptor subunits (GluR1, GluR2/3/4c and GluR4) to identified populations of striatal projection neurons and interneurons. The majority of striatonigral and striatopallidal neurons were double-labeled for GluR2/3/4c. These findings were confirmed using calbindin to label matrix projection neurons. In contrast, immunostaining of the GluR1 subunit was not observed to co-localize with any striatal projection neurons. Striatal interneurons immunostained for parvalbumin were also labeled by antibodies directed against the GluR1 subunit. Approximately 50% of parvalbumin neurons also contained GluR2/3/4c. Somatostatin immunoreactivity did not co-localize with either the GluR1 or GluR2/3/4c subunits. GluR4-immunoreactive neurons were not observed in striatum. This study demonstrates that AMPA-selective glutamate receptors are differentially localized on subpopulations of striatal neurons and interneurons. These findings suggest that discrete striatal neuron populations may express different AMPA receptor subunit combinations which may account for their functional specificity.  相似文献   

20.
In Golgi preparations of the chicken diencephalon, various types of cells and fibres were studied in the nucleus dorsolateralis anterior thalami (DLA). Two groups of neurons were found: projection neurons with long axons and interneurons with locally branching axons. The projection neurons varied in the different areas of the DLA. In the medial part the neurons are large cells with long, moderately spiny dendrites, and in the dorsal part there are small cells with short, wavy and moderately spiny dendrites. These neurons differ completely from those found in the rostral and lateral parts, where the neurons have medium-sized cell bodies and curving, spiny dendrites, which branch tuft-like or with bifurcations. In the rostral and lateral parts of the DLA, thick afferent fibres were impregnated which developed their terminal branchings among the neurons. Owing to their terminal branching pattern and the shape of the terminals they are thought to be optic fibres. The terminal pattern of these fibres is similar to the optic terminals in the LGB of the mammalian brain. The interneurons are GABA positive, as attested by immunostaining in light microscopic and EM specimens. There are rather few of them. The HRP-filled projection neurons and the surrounding neuropil were investigated under EM: synaptic connections around the large terminals and/or around dendrites were identified, but this synaptic arrangement does not display the characteristics of a synaptic glomerulus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号