首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This paper describes the performance of an adaptive array as a countermeasure to multipath fading for a 256 kbps Gaussian-filtered minimum shift keying (GMSK) mobile communication system operating in the 1.5 GHz band. An adaptive array having four antenna elements is implemented using the digital beam forming concept. The constant modulus algorithm (CMA) is employed for the adaptation process to ease the implementation. Measurements in central Tokyo of the bit error rate (BER) performance and an array pattern arising in the multipath environment are presented. Analysis of the array pattern confirms that the array succeeds in directing nulls to the delayed signals. BER performance shows an improvement in Eb/N0, compared with that of a single antenna system, of 17.5 to 22 dB at a BER of 1.0×10-2 in a frequency-selective fading channel  相似文献   

2.
This paper proposes a novel adaptive differential detection scheme (adaptive DD), which can significantly reduce the irreducible bit-error rate (BER) of M-ary DPSK due to Doppler spread by the adaptive linear prediction of the reference signal. The predictor coefficient is adapted to changing channel conditions by using the recursive least-square (RLS) algorithm. A phase sequence estimation based on the M-state Viterbi algorithm (VA) and another based on the decision feedback algorithm (DFA) are presented. A theoretical BER analysis is presented for adaptive DD-DFA. BER performances of 2 and 4DPSK in Rayleigh fading channels are evaluated by computer simulations. When the RLS forgetting factor of β=1 is used, simulation results show that the irreducible BER of 4DPSK can be reduced to 7.2×10-5 (3.9×10 -4) for VA (DFA) while conventional DD offers 3.9×10 -3 when fDTb (maximum Doppler frequency times bit duration)=0.01 and average Eb/N0 (signal energy per bit-to-additive white Gaussian noise (AWGN) power spectrum density ratio)=60 dB, where most errors are produced by Doppler spread. Adaptive DD is also effective in AWGN channels-simulations show that for the case of 4DPSK, a performance gain of 1.2 (0.7) dB is achieved over conventional DD for VA (DFA) at BER=10-3  相似文献   

3.
A pilot symbol-assisted coherent multistage interference canceller using recursive channel estimation is proposed for DS-CDMA mobile radio cellular system. Since the channel variation caused by fading is recursively estimated at each interference cancelling stage, the accuracy of channel estimation is improved successively. Computer simulation results show that the required Eb/N0 at the average BER of 3×10-2 is improved by ~3.5 dB compared to the matched filter receiver for 10 users and two paths with equal power, and where fdT=10-3 (fd: fading maximum Doppler frequency, T: data symbol duration)  相似文献   

4.
A four-element pilot symbol-assisted coherent adaptive antenna array diversity receiver for 4.096 Mchip/s wideband direct sequence code division multiple access mobile radio is implemented and its performance in a multipath fading environment is evaluated by a laboratory experiment using hardware fading simulators. The receiver comprises an adaptive antenna array using the normalised least mean square algorithm and Rake combiner. It is demonstrated that, for the three-user case, the required average signal-to-interference ratio obtaining average BER of 10-3 can be reduced by ~8 dB compared to four-branch antenna diversity  相似文献   

5.
This paper proposes an adaptive interference cancelling equalizer (ICE), which not only equalizes intersymbol interference (ISI), but also cancels cochannel interference (CCI) in the received signal in Rayleigh-fading environments, ICE is an adaptive multiuser detector for the frequency-selective fading environment commonly experienced by mobile communication channels. ICE employs a novel detection scheme: recursive least-squares maximum-likelihood sequence estimation (RLS-MLSE), which simultaneously estimates time-varying channel parameters and transmitted signal sequences. Diversity reception is used to enhance the signal detection performance of ICE. A computer simulation of a 40-kb/s QPSK time-division multiple-access (TDMA) cellular mobile radio system demonstrates the possibility of improving system capacity with ICE. Simulations of ICE with and without diversity are carried out under various fading conditions. For the maximum Doppler frequency of 40 Hz, ICE can attain an average bit-error rate (BER) of 10 -2 under a single CCI carrier-to-interference ratio (CIR) of ~14 dB. Moreover, ICE for two independent CCI signals can attain the average BER of 1.5×10-2 with average CIR⩾-10 dB  相似文献   

6.
The crosstalk degradation caused by an optical amplifier in a four-channel FSK (frequency-shift-keyed) heterodyne communication system is measured. A bit error rate (BER) floor of 3×10-4 is observed when the channels are spaced by 200 MHz, FSK modulation at 45 Mb/s, and when the optical input signal is large enough such that the gain is compressed by 2 dB relative to its small-signal value. The receiver is substantially improved by reducing the optical power amplifier input. However, the sensitivity increases only to a maximum value beyond which it degrades as the optical power of the demodulated channel becomes small relative to the noise of the optical amplifier. The combined effect of the crosstalk and the amplifier noise yields an optimum sensitivity of 250 photons/b for BER=10-9. This result is 5 dB poorer than the sensitivity obtained in the absence of an optical amplifier  相似文献   

7.
The combined effect of coherent RAKE combining using the weighted multislot averaging (WMSA) channel estimation filter and closed-loop fast transmit power control (TPC) in the 4.096 Mchip/s direct sequence code division multiple access (DS-CDMA) mobile radio reverse link is experimentally evaluated. The WMSA channel estimation filter utilizes periodically transmitted pilot symbols (four pilot symbols are time-multiplexed in each 40-symbol time slot). Its observation period is extended to 2-K slots in order to improve the accuracy of the channel estimation. The fast TPC is based on the measurement of signal-to-interference plus background noise ratio (SIR) using pilot symbols. Laboratory experiments show that the use of the K=2 WMSA channel estimation filter reduces the required Eb/I0 at the average BER of 10-3 by approximately 0.5 dB compared to use of the linear interpolation filter, and that the required Eb/I0 is minimized when the SIR measurement interval is M=10 symbols (one slot TPC delay). It was also clarified that SIR-based TPC works satisfactorily when two users with different information data rates, i.e., SF, independently employ fast TPC. Field experimental results obtained in an area nearby Tokyo showed that the average BER of 10-3 is achieved at the target Eb/I0 per antenna of approximately 2.5 dB by using four-finger branch RAKE and two-branch antenna diversity. Although the target Eb/I0 to achieve same BER, when there is one interfering user with a fourfold greater transmit power than that of the desired user that independently employs fast TPC, is almost the same as that in the single-user case, the mobile transmit power is increased by 1.0-2.0 dB due to the increased MAI. These results indicate that the combination of coherent RAKE combining and fast TPC works well in practical multipath fading channels  相似文献   

8.
This paper reports on field measurements of point-to-point indoor high-speed (10 Mbit/s to 30 Mbit/s at 5 Mbaud) wireless communications realized using a flexible multilevel quadrature amplitude modulation (M-QAM) testbed that features real-time equalization and smart antenna-array technology. The results from an extensive set of measurements, 59262 trials in all, performed without cochannel interference under various receiver configurations and wireless environments are presented and analyzed. The results underscore the dramatic potential for a system that optimally combines equalization and a smart antenna array. For example, using only 10 mW of transmit power, the system delivered 30 Mitts at an uncoded bit error rate (BER) of 10 -3 with 5% outage at a coverage radius of 20 in. For a lower data rate of 10 Mbitts, the coverage radius was increased to 32 in, the uncoded BER dropped below 10-7, and the outage improved to 1%. The field measurements indicate that a 4-tap feedforward-filter decision-feedback equalizer with eight feedback-filter taps is sufficient to mitigate the intersymbol interference for typical indoor environments. They also show a significant gain when using a smart antenna array. For example, when transmitting between rooms at a 2% outage probability, the signal-to-noise ratio (SNR) improves by 8.3 dB when using two antennas instead of one antenna. Doubling the number of antennas to four provided an additional SNR improvement of 5.2 dB. The paper also presents simulation results that confirm the performance trends observed from the field measurements  相似文献   

9.
An adaptive Viterbi algorithm, derived from a dynamic estimate of the fading channel is used for the decoding of a convolutional coded 16 QAM system in a mobile environment. The estimates are obtained by a sequence of known pilot symbols embedded in the data stream, and perform compensation for Rayleigh fading. The likelihood criterion in the Viterbi decoder is also modified by these channel estimates through a metric weighting function. We demonstrate through computer simulations, that our new technique achieves a BER improvement of 7-10 dB at Pe =10-3 in a fast flat Rayleigh fading environment compared to an uncoded system. The BER performance of our new technique in a co-channel interference (CCI) controlled environment is also studied, and the results show that it may achieve a 40% to 85% improvement in capacity over the standard modem scheme for the new US digital cellular system, π/4-QPSK  相似文献   

10.
This paper studies optical communications using subcarrier phase shift keying (PSK) intensity modulation through atmospheric turbulence channels. The bit error rate (BER) is derived for optical communication systems employing either on/off key (OOK) or subcarrier PSK intensity modulation. It is shown that at BER = 10-6 and a scintillation level of sigma = 0.1, an optical communication system employing subcarrier BPSK is 3 dB better than a comparable system using fixed-threshold OOK. When sigma = 0.2, an optical communication system employing subcarrier BPSK achieves a BER = 10-6 at SNR = 13.7 dB, while the BER of a comparable system employing OOK can never be less than 10-4. Convolutional codes are discussed for optical communication through atmospheric turbulence channels. Interleaving is employed to overcome memory effect in atmospheric turbulence channels. An upper bound on BER is derived for optical communication systems employing convolutional codes and subcarrier BPSK modulation.  相似文献   

11.
A coherent orthogonal filter (COF) using pilot symbol-assisted channel estimation is proposed for DS-CDMA cellular mobile radio. In the proposed scheme, a complex fading envelope in the multi-path environment is estimated using pilot symbols, and tap coefficients of orthogonal filter are controlled for maximising the signal to interference ratio (SIR) of a RAKE combined signal. Computer simulation results show that the required Eb/N0 of the proposed COF is reduced by ~10.0 dB compared to conventional matched filter receiver at an average BER of 3×102 when there are 10 users and processing gain is 31  相似文献   

12.
We propose a new adaptive modulation technique for simultaneous voice and data transmission over fading channels and study its performance. The proposed scheme takes advantage of the time-varying nature of fading to dynamically allocate the transmitted power between the inphase (I) and quadrature (Q) channels. It uses fixed-rate binary phase shift keying (BPSK) modulation on the Q channel for voice, and variable-rate M-ary amplitude modulation (M-AM) on the I channel for data. For favorable channel conditions, most of the power is allocated to high rate data transmission on the I channel. The remaining power is used to support the variable-power voice transmission on the Q channel. As the channel degrades, the modulation gradually reduces its data throughput and reallocates most of its available power to ensure a continuous and satisfactory voice transmission. The scheme is intended to provide a high average spectral efficiency for data communications while meeting the stringent delay requirements imposed by voice. We present closed-form expressions as well as numerical and simulation results for the outage probability, average allocated power, achievable spectral efficiency, and average bit error rate (BER) for both voice and data transmission over Nakagami-m fading channels. We also discuss the features and advantages of the proposed scheme. For example, in Rayleigh fading with an average signal-to-noise ratio (SNR) of 20 dB, our scheme is able to transmit about 2 bits/s/Hz of data at an average BER of 10 -5 while sending about 1 bit/s/Hz of voice at an average BER of 10-2  相似文献   

13.
The symbol error performance of CD900-like digital cellular mobile radio systems over narrowband and urban wideband transmission channels was investigated. The basic performance is presented for Gaussian, flat-fading Rayleigh, and log-normal channels in the presence of selection and ratio combining space diversity schemes. For wideband channels having more than one resolvable fading path, a CD900-like system without diversity reception suffers from large residual symbol error probabilities PR(≈10-1). The introduction of adaptive correlation diversity (ACD) mitigates the effects of multipath, yielding a PR of 6×10-5. Although this PR value is relatively low, the probability of symbol error (Pe) versus signal-to-noise ratio (SNR) is significantly poorer than for the Gaussian channel. By combining the ACD scheme with space diversity, the PR is eliminated by Pe >10-5, and the channel SNR is within 5 dB of the Gaussian channel performance when Pe is 10-10  相似文献   

14.
A circuit model is proposed to describe photorefractive effects in LiNbO3/LiTaO3 channel waveguides at any intensity level. Capacitive charge storage at the waveguide boundaries is assumed to be provided by trapping states associated with photoconductivity. A consequence of this model is that photoconductive transients are independent of optical intensity at low intensity levels. Photovoltaic and photoconductive effects in proton exchange LiTaO3 channel waveguides were experimentally investigated. Dark conductivities of 2×10-15 to 2 ×10-14(Ω-cm)-1 were extrapolated from photoconductivities up to 2×10-13 (Ω-cm)-1 for power levels of 0.1 to 3 mW. Large DC voltage dependent effects on the conductivity were observed. Straight channel waveguides were observed to be free of photovoltaic effects for output power levels below 35-75 mW  相似文献   

15.
The single-pass (50 cm) amplifier performance of an atmospheric-pressure ArF laser pumped by a 65-ns full-width-at-half-maximum short-pulse electron beam was investigated theoretically for a wide range of excitation rates (0.1-2.0 MW/cm3 ). Atmospheric mixtures of Ne, Ar, and F2 (three mixtures of Ar=40%, 70%, and Ne-free) were studied. A kinetic numerical model of the ArF amplifier with a Ne buffer system was constructed. A one-dimensional propagation treatment considered the gain depletion and saturation absorption spatially and temporally along the optical axis. In this model the rate constants for electron quenching of ArF* of 1.6×10-7, 1.9×10-7, and 2.4×10 -7 cm3/s were used for Ar concentration of 40, 70 percent, and Ar/F2 mixture, respectively  相似文献   

16.
WDM coding for high-capacity lightwave systems   总被引:1,自引:0,他引:1  
An interchannel parallel coding scheme in the wavelength domain-the WDM coding system-is proposed. The system differs from the usual serial coding systems and provides many advantages. First, data channels are completely unaltered in the coding process, rendering it very suitable for practical lightwave systems with standard bit rate. Second, parallel encoding/decoding systems are simpler than those of serial coding systems, being easier to be implemented in high-speed optical systems. Third, compared with serial coding, WDM coding is able to reduce heavily the number of encoding/decoding pairs. For example, a (15, 11) Hamming coded WDM system reduces the number from 12×11=132 to 1 at the line rate of STS-12. Fourth, the WDM coding system could offer infinite coding gain in dispersion-limited lightwave systems. Finally, WDM coding systems could correct single-channel burst error. The system performance was evaluated and the system limitation imposed by bit-skew among wavelength channels was analyzed. The results indicated that a 15-channel Hamming coded WDM system can reduce the uncoded BER from 10-9 to 3×10-17 and the distance limitation imposed by bit-skew is 250 km if a dispersion-shifted fiber is used and a channel span of 30 nm is assumed  相似文献   

17.
The lasing mode behavior of a multiple quantum well (MQW) distributed feedback (DFB) laser was measured when intensity-modulated orthogonally polarized transverse magnetic (TM) mode light was injected. The 3-dB bandwidth of the frequency response shows a trend different from that observed with conventional bias current modulation: at high bias currents, it decreases with increasing bias current. The maximum bandwidth of 3 dB was observed when the normalized bias current was 4, and it reached 16 GHz at this bias current. The gain saturation coefficients for the transverse electric (TE) and TM modes estimated from these results were ∈pE; 2.5×10-17 cm3 and ∈qE 5.7×10-18 cm3 for the TE mode, and ∈pM: 6.0×10-17 cm3 and ∈qM: 2.0×10-14 cm3 for the TM mode  相似文献   

18.
Gain saturation coefficients of unstrained- and strained-layer multiple-quantum-well lasers were measured experimentally. These coefficients were higher in lasers that had compressive strain in their active-layer wells: 2.45×10-17 cm3 with unstrained wells and 12.6×10-17 cm3 with strained wells. The higher gain saturation coefficient in lasers with strained active-layer wells is related to their higher linear TE mode gain coefficient. The linearity factor (K factor) between a laser's damping constant and the square of the laser's resonant frequency decreased slightly with the introduction of the strain in the laser's active layer wells. This factor, however, took the value of about 0.2×10-9 s for each of these lasers  相似文献   

19.
The bit error rate (BER) performance of a two-dimensional (2-D) RAKE receiver, in combination with transmit diversity on the downlink of a wide-band CDMA (W-CDMA) system, is presented. The analyses assume correlated fading between receive antenna array elements, and an arbitrary number of independent but nonidentical resolvable multipaths combined by the RAKE receiver in the general Nakagami-m (1960) fading channel framework. The impact of the array configuration (e.g., the number of transmit antennas and receive antennas, the antenna element separation) and the operating environment parameters (such as the fading severity, angular spread and path delay profile) on the overall space-path diversity gain can be directly evaluated. In addition, the exact pairwise error probability of a convolutional coded system is obtained, and the coding gain of a space-path diversity receiver is quantified.  相似文献   

20.
The performance of the first diode-pumped Yb3+-doped Sr 5(PO4)3F (Yb:S-FAP) solid-state laser is discussed. An InGaAs diode array has been fabricated that has suitable specifications for pumping a 3×3×30 mm Yb:S-FAP rod. The saturation fluence for diode pumping was deduced to be 5.5 J/cm 2 for the particular 2.8 kW peak power diode array utilized in our studies. This is 2.5× higher than the intrinsic 2.2 J/cm 2 saturation fluence as is attributed to the 6.5 nm bandwidth of our diode pump array. The small signal gain is consistent with the previously measured emission cross section of 6.0×10-20 cm2, obtained from a narrowband-laser pumped gain experiment. Up to 1.7 J/cm3 of stored energy density was achieved in a 6×6×44 mm Yb:S-FAP amplifier rod. In a free running configuration, diode-pumped slope efficiencies up to 43% (laser output energy/absorbed pump energy) were observed with output energies up to ~0.5 J per 1 ms pulse. When the rod was mounted in a copper block for cooling, 13 W of average power was produced with power supply limited operation at 70 Hz with 500 μs pulses  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号