首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
Inconel 718 with thickness ranged from 0. 1 - 1.7 mm was chosen as interlayer to promote weldability in friction welding of TiAl intermetallics and structural steel such as AIS14140, in which the welded joint presents single fin showing less welding deformation on TiAl side. The correlations between tensile strength and the interlayer thickness were analyzed and fitted to a model. It indicates an optimum interlayer thickness ranged from 0.9 - 1.1 mm where the tensile strength reaches as high as 360 MPa. Otherwise, while the interlayer thickness decreases to 0. 1 mm, brittle compounds of TiC, Al2Ti4C2 and MTC3 are formed in the welded zone so that the tensile strength decays. Thicker interlayer should be also avoided as double joints may occur at TiAl -lnconel 718 and lnconel 718 -AISI 4140, respectively, which lowers the tensile strength to some extent.  相似文献   

2.
以0.1mm厚的Ti箔做中间夹层,使用低功率激光-TIG复合焊的方式对SiCp/6061-T6Al MMCs 进行焊接,并对接头的宏观形貌、显微组织、物相、电阻率、抗拉强度及断口形貌进行分析。结果表明:激光功率对焊缝的成形有着较大影响;Ti箔的加入基本抑制了焊缝中针状Al4C3生成,并生成TiC增强相以及条状TiAl3;焊缝区为等轴晶组织,熔合区为柱状晶组织,热影响区组织变化不明显;随着激光功率的增加接头的电阻率呈现出增加的趋势,并明显高于母材;在554W时接头的抗拉强度可达196.98MPa,是母材强度的54.71%。接头断口中几乎没有气孔,韧窝中的第二相粒子以TiC为主,接头呈现出以脆性断裂为主的脆-韧性混合断裂特征。  相似文献   

3.
基于Inconel718镍基高温合金材料的可焊性分析以及对大厚度比焊接件的结构分析,以1mm厚度的薄壁件为切入点研究了采用与不采用辅助夹具进行焊接定位的施焊效果。采用钨极脉冲氩弧焊方法使用辅助夹具对0.8mm厚度薄板进行焊接工艺试验,获得熔合良好的接头。大厚度比(1∶11)构件的焊接工艺应以控制热输入与防止薄壁件变形为原则,通过分析结构特点可利用夹具进行定位、辅助散热的作用制定出有效的焊接工艺。  相似文献   

4.
1060纯铝箔作为中间层,通过电阻热辅助超声波缝焊的方式实现1 mm厚度6061铝合金和T2紫铜异种金属焊接,分析了焊接过程中电阻热对铝/铜焊接接头焊缝成形、界面形貌、温度场以及力学性能的影响. 结果表明,采用单独超声波缝焊焊接铝/铜异种金属时,因产生的焊接能量较小,接头连接界面处仅局部区域位置形成连接,接头拉剪强度为45 MPa. 但在电阻热辅助超声波缝焊过程中,电阻热的加入能够有效预热工件,令待焊材料表面发生软化,在高频振动作用下,接头连接界面处形成有效连接. 同时,引入电阻热提高了铝/铜界面处温度,由单独超声波缝焊的140 ℃增加至190 ℃,界面处原子扩散距离增加,获得焊接接头的拉剪强度增加至75 MPa,相对前者接头拉剪强度提高67%.  相似文献   

5.
Inconel 718镍基合金与304不锈钢电子束焊接   总被引:1,自引:0,他引:1       下载免费PDF全文
对Inconel 718镍基合金与304不锈钢进行了电子束焊接试验,分析了接头显微组织及力学性能. 结果表明,焊缝区中部由枝晶及细小的等轴晶组成,在近镍侧及近钢的熔合线,都由向焊缝中心方向生长的树枝晶组成. 各特征区域显微硬度值各不相同,焊缝区高于镍基合金侧,高于不锈钢侧. 当焊接束流为8 mA,焊接速度为700 mm/min时,接头的抗拉强度最高为722 MPa. 拉伸试样断裂发生于焊缝区内部,呈典型的延性断裂,断口可观察到明显等轴状韧窝.  相似文献   

6.
当金属件的特征尺寸缩小到微尺度时,会产生尺寸效应,从而使对微成形的理解变得复杂。本文以0.1mm厚的时效态Inconel 718薄板为研究对象,对其进行了力学性能测试。基于力学测试数据,探究了时效态Inconel 718薄板在相同应变速率、不同拉伸方向上各向异性、延伸率、屈服强度及最大抗拉强度的变化规律,并建立了介微观尺度下各向异性及屈服强度的预测模型和考虑应变量及应变速率的准静态硬化模型。结果表明:时效态Inconel 718薄板具有明显的各向异性,其延伸率以45°为极值点呈现先增大后减小的变化规律,屈服强度和最大抗拉强度的变化规律与之相反。由于尺寸效应的存在需要两组不同的材料参数对各向异性及屈服强度进行预测。当应变速率大于0.1 s-1时,材料屈服强度表现出明显的应变速率敏感性,该硬化模型不再适用。  相似文献   

7.
为使Inconel 718合金的筒形多层夹芯结构顺利成形,研究该合金激光对接板的高温塑性。结果表明,拉伸方向对激光对接板的伸长率有很大影响。横向拉伸时,在温度为950°C和应变率为3.1×10-4s-1的条件下,最大伸长率为458.56%,此时m值为0.352,焊缝未变形。纵向拉伸时,在温度为965°C和应变速率为6.2×10-4s-1的条件下,最大延长率为178.96%,此时m值为0.261,焊缝随母材同时变形,焊缝的微观组织为树枝晶,晶间析出了Nb含量较高的Laves相。纵向拉伸时,由于动态再结晶的缘故,焊缝中出现了由树枝晶和等轴晶组成的混合组织。高温变形后,焊缝中的大量Laves相转化为δ相,但焊缝中仍有小部分残余的Laves相存在。多层夹芯筒结构成形的结果表明,激光对焊板的高温塑性能满足其筒形夹芯结构的要求。  相似文献   

8.
ABSTRACT

An Au–Ni interlayer was used to improve the joint strength between the Ti-6Al-4V alloy friction welded to the 718 Ni-based alloy. The interlayer was melted and ejected at the interface of the joint during friction welding, showing that frictional heat played a role in brazing of the interlayer. The melted interlayer suppressed the formation of intermetallic compounds between titanium and nickel at the interface. The tensile strength of the joint significantly increased from 460?MPa for direct friction-welded joints, to 698?MPa when the interlayer was added. The mechanism underlying the strength improvement of the friction-welded joint was the unique phenomenon of a combination of brazing of the interlayer and diffusion of solutes in the base metal to the interlayer.  相似文献   

9.
Abstract

The joint tensile strength and metallurgical properties of a friction welded joint of commercially pure Ti and pure Ni has been investigated in as welded and post-weld heat treated conditions. While friction pressure did not significantly impinge on joint tensile strength, joint tensile strength was affected by friction time. A 1–1·5 μm thick interlayer is essential to join pure Ti and pure Ni using friction welding. A maximum joint tensile strength of 450 MPa was achieved and the joint fractured in the Ti original (not heat affected zone) substrate, i.e. the joint efficiency was approximately 112% relative to Ti substrate and 94·5% relative to Ni substrate. The joint tensile strength abruptly decreased as heating temperature was increased to 873 K and/or the Larson-Miller parameter was increased to approximately 19–20 × 103. The joint tensile strength rapidly decreased with increasing interlayer thickness up to approximately 10 μm, and then remained constant for further increase in interlayer thickness. Four layers occurred at the interface of joints heated to more than 873 K, namely Ti2Ni, TiNi, TiNi2, TiNi3. The fracture of heated joints propagated mainly in the Ti2Ni layer and/or at the interface between the TiNi and TiNi3 layers.  相似文献   

10.
采用激光焊接工艺,对油气工程用4 mm厚经1030 ℃×2 h固溶+780 ℃×8 h时效和1030 ℃×2 h固溶+780 ℃×16 h时效两种热处理后的Inconel 718合金进行激光焊接,结合微观组织分析、拉伸性能分析和断口形貌分析,对合金母材及激光焊接头在原位充氢条件下的氢脆行为进行了研究。结果表明:长时间时效导致δ相大量析出,使合金母材的氢脆敏感性指数从正常时效态的0.27提高到过时效态的0.48。激光焊接头整体的氢脆敏感性没有受焊前热处理的影响,分别为0.39和0.38;由于焊缝内Laves相的析出,导致激光焊接头的氢脆敏感性高于正常时效态的母材。  相似文献   

11.
Although the welding zone of direct bonding between a TiAl alloy and SCM440 can be obtained by friction welding, martensitic transformation and the formation of intermetallic compounds (IMCs) and cracks result in a lower tensile strength of the joints relative to those of other welding techniques. Insert metals were used as a buffer layer to relieve stress while increasing the bond strength. In this study, the microstructure and mechanical properties on welded joints of a TiAl alloy and SCM440 with various insert metals, were investigated. The TiAl/Cu/SCM440 and TiAl/Ni/SCM440 joints were fabricated using a servo-motor-type friction welding machine. As a result, it was confirmed that the formation of a welding flash was dependent on the insert metal type, and the strength of the base metal. At the TiAl/Cu/SCM440 interface, the formation of IMCs CuTiAl and Cu2TiAl was observed at TiAl/Cu, while no IMC formation was observed at Cu/SCM440. On the other hand, at the TiAl/Ni/SCM440 interface, several IMCs with more than 100 μm thickness were found, and roughly two compositions, viz., Ti2NiAl3 and TiNi2Al, were observed at the TiAl/Ni interface. At the Ni/SCM440 interface, 10 μm-thick FeNi and others were found.  相似文献   

12.
通过添加钛箔中间层,研究了镁/铝合金异种金属电阻搭接接头的微观组织与力学性能。研究结果表明,添加0.2mm厚度钛箔中间层可以大幅提高镁/铝异种金属电阻点焊接头的结合强度,接头的最大拉剪力随焊接电流的增大先增大后减小;当焊接电流为14kA时,最大拉剪力达到最大为2.2kN。铝钛界面处有TiAl3生成,接头断裂在镁侧热影响区上,经过换算接头的剪切强度能够达到156MPa。通过SEM和EDS分析,添加钛中间层阻断了镁合金和铝合金的相互扩散,钛中间层阻碍了Mg-Al金属间化合物的生成,从而大大提高接头的结合强度。  相似文献   

13.
进行了钛合金与不锈钢采用铌中间层的真空热轧连接实验,分析了连接界面的显微组织及性能。结果表明,采用铌中间层能够明显提高接头的塑性。当压缩率为25%,轧制速度为38 mm/s,热轧温度为800°C和900°C时,不锈钢与铌的连接界面没有明显的金属间化合物层;当热轧温度为1000°C和1050°C时,不锈钢与铌连接界面形成Fe-Nb金属间化合物层,并且当热轧温度为1050°C时在金属间化合物层与不锈钢之间出现开裂。铌与钛合金连接界面的扩散层厚度随着热轧温度的升高而增大。热轧温度为900°C的连接接头的拉伸强度可达-417.5MPa,拉伸试样断裂于铌中间层,断口呈塑性断裂特征。热轧温度为800°C的热轧过度接头分别与钛合金和不锈钢进行TIG焊接,TIG焊后热轧过度接头的拉伸强度可达-410.3 MPa,拉伸试样断裂于铌中间层,断口呈塑性断裂特征。  相似文献   

14.
对1.2mm厚镀锌钢板和1.15mm厚6016铝合金平板试件进行了加入中间夹层铅的激光搭接焊试验,通过调整焊接工艺参数获得最佳焊接成形,利用卧式金相显微镜、扫描电镜、x射线衍射、微机控制电子万能试验机等手段研究了焊接接头各区域的金相组织、断口形貌、主要物相与接头力学性能.结果表明,在钢/铝激光焊中添加中间夹层铅,焊接接...  相似文献   

15.
DP780镀锌钢激光焊接性能与工艺   总被引:1,自引:0,他引:1  
针对0.8 mm的车用DP780镀锌双相钢,采用4 kW的连续光纤激光器对材料进行激光搭接试验,通过调节两板间的预留间隙、激光功率、焊接速度、离焦量,研究了工艺参数对焊接接头焊缝的成形影响规律,同时分析各工艺参数对焊缝下塌量、抗拉强度、气孔状况的影响规律;最后基于焊缝抗拉强度、焊缝下塌量以及焊接过程中气孔状况评价焊接质量.结果表明,功率在3 800 W、焊接速度在95~100 mm/s,离焦量在-2~2 mm,预留间隙在0.2~0.25 mm区间的工艺参数条件下,焊接成形较好,此时的抗拉强度保持在180 MPa以上,下塌量总量在0.35~0.45 mm,以及飞溅和外部气孔较少.建立抗拉强度—焊缝下塌量—气孔状况方法评价焊接质量,采用此方法,能够改善气孔缺陷,提升焊接效率.  相似文献   

16.
TiAl金属间化合物电子束焊接头应力场分布特征   总被引:1,自引:1,他引:0       下载免费PDF全文
采用热弹塑性有限元方法,对TiAl金属间化合物平板电子束焊接接头的焊接应力进行了三维数值模拟,并分析了应力分布状态与裂纹特征之间的关系.结果表明,沿焊缝方向σx为残余拉应力,在焊道中部维持在较高水平,最高拉应力为390MPa.焊道中部横截面σx方向为残余拉应力,在热影响区附近达到最大值415 MPa,σy方向也为残余拉应力,且在距焊缝中心1.9 mm处达到最高值160 MPa左右.在不同焊接热输入条件下接头最高抗拉强度为304.7 MPa,断裂发生在接头热影响区附近,即残余应力最大的区域.  相似文献   

17.
Plasma-MIG (metal inert gas arc welding) hybrid welding of 6061 aluminum alloy with 6 mm thickness using ER5356 welding wire was carried out.The microstructures and mechanical properties of the welded joint were investigated by optical microscopy,X-ray diffraction (XRD),energy dispersive spectroscopy (EDS),tensile test,hardness test and scanning electron microscope (SEM) were used to judge the type of tensile fracture.The results showed that the tensile strength of welded joint was 142 MPa which was 53.6% of the strength of the base metal.The welding seam zone was characterized by dendritic structure.In the fusion zone,the columnar grains existed at one side of the welding seam.The fibrous organization was found in the base metal,and also in the heat affected zone (HAZ) where the recrystallization occurred.The HAZ was the weakest position of the welded joint due to the coarsening of Mg2Si phase.The type of tensile fracture was ductile fracture.  相似文献   

18.
The pure Zn foils with different thicknesses(0.02, 0.05, 0.1, 0.2 and 0.3 mm) were selected as interlayers to improve the quality of friction stir lap welding joint of 7075-T6 Al and AZ31 B Mg dissimilar alloys. The effects of the interlayer thickness on joint formation, microstructure and tensile strength were analyzed. The results displayed that the maximum length of the boundary between stir zone(SZ) and thermo-mechanically affected zone in lower plate was obtained by the addition of the Zn interlayer with 0.05 mm thickness. The Mg–Zn intermetallic compounds(IMCs) were discontinuously distributed in the SZ, replacing the continuous Al–Mg IMCs. The size of Mg–Zn IMCs increased with the increase in the thickness of the Zn interlayer. The maximum tensile shear strength of 276 N mm-1 was obtained by the addition of 0.05 mm Zn foil, which increased by 45.6% of that of the joint without the Zn foil addition.  相似文献   

19.
Abstract

This paper describes an autocompleting friction welding method that was carried out to weld with an insert piece set between fixed base metals. The base metal was low carbon steel, and the faying surface of the fixed specimen had a 10 mm diameter. The effect of the thickness of the insert piece (insert thickness) on the joining phenomena was investigated. When the insert thickness was 3˙2 mm and the friction welding conditions were a friction speed of 27˙5 s–1 and friction pressure of 36 MPa, the insert piece had a shear fracture toward the circumferential direction in the peripheral portion of the weld interfaces by the initial peak produced during the friction process. The joint also had cracks at the adjacent region of the weld interfaces, although it had the same tensile strength as the base metal. On the other hand, the joint made using the insert piece with a groove on its peripheral portion had the same tensile strength as the base metal, where it fractured. This joint also had 90° bend ductility without cracks. In this case, the optimum insert thickness was 4˙0 mm, and the thickness at the bottom of the grooves (groove bottom thickness) was 1˙2 mm with an 11 mm inner groove diameter, and the friction welding conditions were a friction speed of 27˙5 s–1 and friction pressure of 36 MPa. In conclusion, a sound friction welded joint was made by an autocompleting friction welding method.  相似文献   

20.
Mechanical behavior of reference and TIG-welded Inconel 718 specimens was examined in the present work. Tensile, constant amplitude fatigue, and fracture toughness tests were performed in ambient temperature for both, reference and welded specimens. Microstructure revealed the presence of coarse and fine-grained heat-affected zones. It has been shown that without any post-weld heat treatment, welded specimens maintained their tensile strength properties while their ductility decreased by more than 40%. It was found that the welded specimens had lower fatigue life and this decrease was a function of the applied fatigue maximum stress. A 30% fatigue life decrease was noticed in the high cycle fatigue regime for the welded specimens while this decrease exceeded 50% in the low cycle fatigue regime. Cyclic stress-strain curves showed that Inconel 718 experiences a short period of hardening followed by softening for all fatigue lives. Cyclic fatigue response of welded specimens’ exhibited cyclically stable behavior. Finally, a marginal decrease was noticed in the Mode I fracture toughness of the welded specimens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号