首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
运动目标检测是计算机视觉、图像理解、目标跟踪等领域非常重要的研究内容。为了能够及时检测到图像场景中的运动目标,本文选择建立混合高斯背景模型作为检测运动目标的方法,该方法能有效的提取出运动的目标及其携带的运动信息,取得比较好的效果。  相似文献   

2.
基于改进高斯混合建模和短时稳定度的运动目标检测算法   总被引:1,自引:0,他引:1  
传统高斯混合建模方法中前景模型转换为背景模型的风险随着模型权值在一定更新率下的迭代累加而增大,使得传统方法难以有效检测低速运动目标.该文对高斯混合建模中背景匹配失败时生成的前景模型加以利用并引入短时稳定度指标进行综合判断,在深入挖掘前景模型中包含的运动目标信息和像素点级稳定性的基础上实时区分各像素点的状态.多场景下的实验结果表明,该方法对低速目标达到了更高的检出率.  相似文献   

3.
基于滑动窗的混合高斯模型运动目标检测方法   总被引:1,自引:0,他引:1  
在复杂场景下,传统混合高斯模型能较好地检测出运动目标,但随着时间的推移,模型参数收敛缓慢且难以适应场景中真实背景的实时变化,从而导致运动目标的错误检测率增加。该文利用滑动窗技术的短时历史记忆特性,提出一种新颖的基于滑动窗的混合高斯模型运动目标检测方法,该方法弥补了传统混合高斯背景模型不能及时形成新背景的缺点,提高了运动检测的完整性,并进一步降低了算法对场景光照变化的敏感性。多场景下的对比实验结果表明,该方法能更准确、完整地检测出运动目标并具有更好的环境适应性。  相似文献   

4.
张硕  杨耀权 《电子世界》2013,(19):15-16
传统的混合高斯背景模型对光照突变十分敏感,对运动车辆检测效果不理想。为此,本文提出了一种基于改进混合高斯背景模型的车辆检测算法,利用不匹配像素来消除光照突变对背景建模产生的影响。实验结果表明,与传统的混合高斯背景模型算法相比,在光照突变明显的条件下,改进后的算法更能有效检测出运动车辆。  相似文献   

5.
任克强 《电视技术》2012,36(23):168-171
针对传统混合高斯模型使用固定学习速率所带来的问题,提出了一种改进的运动目标检测算法。该算法采用自适应的学习速率调整策略,在背景建模初期,采用较大的学习速率加快初始背景的建模,使得模型能更快地适应背景的变化;背景形成以后,根据目标运动的快慢动态调整学习速率,从而能够及时更新背景,消除运动目标的残留和拖影;最后利用基于HSV颜色空间的阴影检测算法消除运动阴影。实验结果表明,改进算法优于传统混合高斯模型,可以更准确地检测出运动目标,更好地消除阴影,并具有较好的自适应性和稳健性。  相似文献   

6.
吕游  任政  李向阳  方向忠 《信息技术》2012,(10):147-150
背景建模与目标检测是视频跟踪的重要步骤和基础,非参数核密度估计与混合高斯模型是背景建模与目标检测的经典方法。文中首先介绍了高斯模型与核密度估计的基本原理及各自的优缺点,然后提出了一种核密度-混合高斯模型级联算法,利用核密度估计快速分割前景与背景区域,再由混合高斯模型对于无法精确建模的区域进行二次判定,有效综合了二者各自的优点。仿真结果表明,该算法具有良好的实时性和鲁棒性。  相似文献   

7.
门瑜  郑娟毅  李萌 《电视技术》2016,40(4):18-21
在视频交通车辆目标检测中,阴影问题是影响其检测准确性的关键问题之一.为了解决这个问题,提出了一种结合单模高斯模型和背景差法的运动目标阴影检测方法.首先针对传统单模高斯模型提出了一种自适应学习率和选择性差值更新背景相结合的方法,加快了背景模型的初始化速度,同时结合背景差法对阴影部分进行检测与去除.实验结果表明,该方法能够较好地去除车辆的阴影,提高了检测的准确性.  相似文献   

8.
在视频分析的过程中,背景建模和运动目标提取是一个非常重要的问题.混合高斯模型是进行背景建模常用的模型之一.但是单纯运用混合高斯模型进行运动目标提取的效果并不是非常理想.本文提出了一种自上而下的局部层次化混合高斯模型,该算法首先确定更新区域,然后在区域中运用分块的混合高斯模型和点像素混合高斯模型进行背景建模和目标提取.实验表明该方法具有较好的处理效果,同时也提高了处理的时间效率.  相似文献   

9.
吕苗苗  孙建明 《半导体光电》2019,40(6):874-878, 885
运动图像目标检测指的是从序列图像中将变化的目标从背景中分离出来,高斯混合模型可以对视频序列图像的前景和背景进行分类,再利用背景减除实现运动目标的检测。提出一种基于改进高斯混合模型的优化背景建模方法,该方法首先利用3×3模板对序列图像帧中的像素进行类似卷积的均值计算,然后利用相邻均值的差提取均差因子自适应更新图像的均值。在此基础上,设计了自适应学习率和学习速率,利用改进高斯混合模型实现序列图像的背景建模。改进模型不仅能有效减少数据计算量,同时可以降低在相似区域像素计算的时长,大大加快背景建模速度。实验结果表明,改进模型在目标检测、算法执行速率等性能指标上都有更好的表现,能满足实时检测要求。  相似文献   

10.
王然 《电子质量》2011,(12):7-10
在运动目标检测技术中,使用传统的高斯混合背景模型所得到的检测结果并不能完美地获取运动目标的轮廓信息,而图像中像素的梯度信息,刚好就是反映了各物体的轮廓和边界,并且相对于颜色信息而言,梯度信息对于噪声并不敏感。为此,该文对传统的高斯混合背景模型进行了改进,提出基于梯度时空信息的高斯混合背景模型,证明了改进的算法确实能够取...  相似文献   

11.
随着人工智能的发展,提出了使计算机系统具有模拟人类通过视觉接收外界信息、识别和理解周围环境、协助或代替人类感知的能力,基于视频序列的运动目标分析也就应运而生.本文针对目前常用的背景减法,帧间差分法和混合高斯背景建模的运动检测方法的优缺点,提出了一种3者相结合的运动目标检测算法.在讨论数学模型的基础上,通过OpenCV进...  相似文献   

12.
针对现有方法在复杂的环境下不能很好地检测出运动物体的问题,提出了一种改进的基于混合高斯模型的背景消减法检测运动目标。改进了背景模型的更新算法,提高了背景更新速度。利用帧间差分法消除了运动影子和光照突变问题,并采用(r,g,l)颜色空间检测和抑制了运动阴影。实验结果表明,该算法能很好地提取出运动目标。  相似文献   

13.
研究在动态背景下对视频图像序列进行运动目标的检测。主要包括三个步骤,分别是运动估计,运动补偿和目标检测。在运动估计中采用的主要是基于特征点匹配算法。这种算法与传统的块匹配算法最大的好处在于它的数据量少,计算简单迅速而且图像的匹配可靠性更高。最后用计算机视觉库OpenCV进行实现。  相似文献   

14.
为了改善混合高斯模型在光照突变时容易产生大量误检的缺陷,采用了一种高斯模型与均值法相结合并为前景像素建立计数器的方法。在建立背景模型时,运用多帧图像求平均值的方法初始化混合高斯模型的背景;为每帧图像的前景像素数建立计数器,并以此消除被误判为前景的区域;对检测出的前景区运用数学形态学处理,得到图像真正的前景区域。结果表明,该算法不仅克服了初始背景中的干扰,而且消除了光照突变时的误检,提高了运动目标的检测率。  相似文献   

15.
传统的高斯模型无法检测比较复杂的场景或速度较低的运动目标,因此提出基于改进高斯混合模型的运动目标检测算法.使用多个高斯模型表示运动目标图像内各像素点特征,并基于图像内各像素点与高斯混合模型相匹配则视其为背景点,反之为前景点原理,更新高斯混合模型.通过更新前景模型并计算短时稳定度指标,提高运动目标检测效果,通过确定高斯分...  相似文献   

16.
《现代电子技术》2017,(21):69-72
为了提高运动目标检测与跟踪的精确性与可靠性,提出一种基于改进高斯混合模型的运动目标检测与跟踪方法。首先,建立改进高斯混合背景模型,对运动目标图像进行分块处理,利用相连帧的连续性对运动目标图像的参数更新,提取完整的运动目标并进行分割;其次,将给定的当前帧像素点与目标图像进行匹配,减少高斯混合模型的分布数量和计算量,根据分块处理后的运动目标的大小、形状以及颜色信息完成运动目标全局匹配,实现运动目标的实时检测与跟踪。实验结果表明,与目前的高斯混合模型对运动目标检测与跟踪的方法相比,所提方法计算过程较为简单,具有更快的检测速度和更可靠的检测结果。  相似文献   

17.
基于OpenCV的运动目标识别算法与实现   总被引:3,自引:0,他引:3  
介绍一种结合背景差分法和瞬时差分法的在视频序列中识别运动目标算法。该算法利用瞬时差分法得到当前帧中运动目标的轮廓信息,在更新背景模型时不更新运动目标轮廓内区域,避免了由运动目标引起的背景模型更新误差。给出用OpenCV实现算法的具体过程和关键代码。实验结果表明,该方法可以实现视频序列中运动目标的识别,具有实时性,并能得到较好的识别结果。  相似文献   

18.
基于OpenCV的运动目标检测方法研究与应用   总被引:1,自引:0,他引:1  
针对视频监控系统的运动目标检测部分,介绍了以OpenCV为平台,以背景减法与帧差法为基础的检测方法。它以背景减法建立和更新背景模型,利用感兴趣区域的设置提高实时性,引入修正的大津法自适应阈值改善二值化效果,并以帧差法为补充降低虚报率及光照变化的影响。实验表明,该方法可以快速有效地对运动目标实施报警。  相似文献   

19.
基于OpenCV的红外弱小运动目标检测与跟踪   总被引:3,自引:2,他引:3       下载免费PDF全文
针对信噪比低、背景和噪声干扰严重的红外图像,根据图像序列中运动目标的帧间相关特性以及噪声的不相关理论,基于OpenCV(Open Soure Computer Vision Library)计算机视觉库,提出了一种弱小目标的检测算法,并对检测到的目标进行了跟踪。采用能量累积的方法得到背景,然后从原始图像中去除背景,提高信噪比;利用目标的帧间相关特性以及运动信息去除噪声;最后通过Kalman滤波算法来对检测到的目标进行跟踪。实验结果表明:该检测算法能有效地从序列图像中提取出弱小运动目标,跟踪算法也能实时地进行跟踪并在目标被遮挡时准确地预测出目标位置。  相似文献   

20.
徐凯  陈仕先  颜广 《激光与红外》2012,42(7):821-824
提出了一种改进的基于单高斯背景模型运动目标的检测算法。该算法用四帧差分法确定运动目标区域,用单高斯模型对背景进行更新,然后通过(r,g,I)特征空间去除阴影,从而提取运动目标。实验结果表明,该算法能在变化的场景中对背景进行实时更新,能快速检测出运动目标,算法的运算量小。在室内环境和背景较为稳定的室外环境中都具有较好的应用价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号