首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用非光敏苯并环丁烯(BCB)进行MEMS压阻式加速度敏感芯片三层结构制作.BCB键合具有工艺温度低、键合表面要求低等特点,适用于芯片的圆片级封装.但是固化过程中BCB粘度随温度升高而下降,流动性变大,在毛细作用的影响下沿着微小间隙流淌,导致可动部件粘连,器件失效.通过控制BCB厚度、增加BCB阻挡槽解决了可动部件粘连问题,制作了三层硅结构的加速度敏感芯片.样品漏率小于1.0×10-10pa.m3/s,键合剪切强度大于20 MPa,能够满足航天、工业、消费电子等各领域的应用需求.  相似文献   

2.
光敏BCB作为粘结介质进行键合工艺实验研究。实验中选用XUS35078负性光敏BCB,提出了优化的光刻工艺参数,得到了所需要的BCB图形层,然后将两硅片在特定的温度与压力条件下完成了BCB键合。测试表明:该光敏BCB具有较小的流动性和较低的塌陷率。键合后的BCB胶厚约为11.6μm,剪切强度为18MPa,He细检漏率小于5.0×10-8atm·cm3/s。此键合工艺可应用于制作需要低温工艺且不能承受高电压的MEMS器件。  相似文献   

3.
提出了一种利用体微机械加工技术制作的硅三层键合电容式加速度传感器.采用硅各向异性腐蚀和深反应离子刻蚀技术实现中间梁一质量块结构的制作,通过玻璃软化键合方法完成上、下电极的键合.在完成整体结构圆片级真空封装的同时通过引线腔结构方便地实现了中间电极的引线.传感器芯片大小为6.8 mm×5.6 mm×l.26 ITUTI,其中敏感质量块尺寸为3.2 mm×3.2 mm×0.42 mm.对封装的传感器性能进行了初步测试,结果表明制作的传感器灵敏度约4.15 pF/g,品质因子为56,谐振频率为774 Hz.  相似文献   

4.
针对绝缘体上硅(SOI)异质异构结构特点,提出了两次对准和两次阳极键合工艺方法,实现了圆片级SOI高温压力传感器硅敏感芯片的叠层键合。采用玻璃—硅—玻璃三层结构的SOI压力芯片具有良好的密封性和键合强度。经测试结果表明:SOI高温压力传感器芯片键合界面均匀平整无缺陷,漏率低于5×10~(-9)Pa·m~3/s,键合强度大于3 MPa。对芯片进行无引线封装,在500℃下测试得出传感器总精度小于0. 5%FS。  相似文献   

5.
介绍了一种采用Pb-Sn共晶合金作为中间层的键合封装技术,通过电镀的方法在芯片与基片上形成Cr/N i/Cu/Pb-Sn多金属层,在温度为190℃、压强为150 Pa的真空中进行键合,键合过程不需使用助焊剂,避免了助焊剂对微器件的污染。试验表明:这种键合工艺具有较好的气密性,键合区合金分布均匀、无缝隙、气泡等脱焊区,键合强度较高,能够满足电子元器件和微机电系统(MEMS)可动部件低温气密性封装的要求。  相似文献   

6.
设计了一种可用于器件级真空封装的三明治电容式MEMS加速度传感器.该传感器被设计为四层硅结构,其中上下两层为固定电极,中间两层为硅-硅直接键合的双面梁-质量块结构的可动电极.利用自停止腐蚀工艺在中间质量块键合层上腐蚀出2个深入腔内的V型抽气槽,使得MEMS器件在后续的封装中能够实现内部真空.为防止V型抽气槽在划片中被水或硅渣堵塞,采用双面划片工艺.划片后,器件的总尺寸为6.8mm ×5.6mm ×1.72 mm,其中,敏感质量块尺寸为3.2mm×3.2mm ×0.86mm,检测电容间隙2.1 μm.对器件级真空封装后的MEMS加速度传感器进行了初步测试,结果表明:制作的传感器的谐振频率为861 Hz,品质因数Q为76,灵敏度为1.53 V/gn,C-V特性正常,氦气细漏<1×10-9 atm-cm3/s,粗漏无气泡.  相似文献   

7.
为了克服传统方法低通量、低精度、低控制性和低效率的缺点,提出一种基于微流控技术研究肿瘤干细胞。基于二甲基硅氧烷,设计三层结构微流控芯片,结构包括细胞及培养液注入层、中间悬浮培养层和废液处理层。采用真空等离子氧化处理完成对准键合。芯片实验结果证明了微流控芯片的可行性和有效性。  相似文献   

8.
从集成加速度传感器敏感芯片结构参数的设计入手,分析了支撑梁厚度、电容初始间隙、质量块等敏感芯片结构参数对传感器灵敏度、非线性等性能的影响.同时利用结构分析软件ANSYS进行仿真分析,并对优化后的敏感芯片结构参数进行验证,结果表明:该结构的敏感芯片使加速度传感器灵敏度能够达到10 mV/gn以上,非线性优于2%.  相似文献   

9.
微机电系统(MEMS)陀螺需要真空封装以确保其检测精度,晶圆级真空封装可以使MEMS微结构避免芯片切割过程中的粘连以及颗粒污染,提高芯片的成品率.为实现MEMS陀螺芯片的晶圆级真空封装,提出了一种全硅MEMS陀螺芯片的晶圆级真空封装结构方案,并突破了Si-SiO2直接键合、吸气剂制备、金—硅(Au-Si)键合等关键技术...  相似文献   

10.
《传感器世界》2014,(12):43-43
正近日,中国科学院微电子研究所集成电路先导工艺研发中心晶圆键合联合实验室在传感器晶圆级键合封装技术研发领域取得新进展,其针对三轴加速度传感器所开发的8in.Al-Ge共晶圆片级封装技术(WLP)以及配套的减薄和划片技术已通过苏州明皜传感科技有限公司的质量体系考核,采用该系列技术的T4型三轴加速度产品已上市销售。MEMS器件与传统IC器件相比,往往具有脆弱的可动结构,因此需要在MEMS器件划片与测试前将其保护起来。WLP技术在大大降低器件尺寸与成本的同时,还可有效地提高器件生产优良率与可靠性,因此针对MEMS器件的WLP技术已成为科技界与工业  相似文献   

11.
介绍了一种新的MEMS器件敏感芯片的制备技术———选择性电铸技术。以金为检测电极、铜为牺牲层、正胶作为电铸胎膜,在牺牲层上经过数次电铸形成MEMS器件敏感芯片的各组成部分,腐蚀掉牺牲层后便得到了所需的敏感芯片。以微机械陀螺仪敏感芯片的制备为例,介绍了选择性电铸技术的工艺流程,进行了工艺流片,所制备的微机械陀螺仪敏感芯片结构完整、侧壁陡直、表面平整。该技术在电容式微加速度计及微机械陀螺仪等多种MEMS器件敏感芯片的制作中有广泛的应用前景。  相似文献   

12.
基于硅塑性变形的蛇形梁垂直梳齿驱动器   总被引:1,自引:0,他引:1  
设计了基于硅塑性变形的垂直梳齿驱动器,中央可动微镜由四组蛇形曲折梁支撑。驱动器的制作采用硅—硅键合技术,首先利用DRIE干法刻蚀技术释放可动梳齿与固定梳齿,然后通过各向异性湿法腐蚀制作的施压凸台实现可动梳齿和固定梳齿的精确自对准,最后利用硅塑性变形使可动梳齿和固定梳齿在垂直方向上产生位错,成功制作出在Z方向依靠位错梳齿实现垂直驱动的蛇形梁静电梳齿驱动器。  相似文献   

13.
《传感器世界》2022,(8):46-47
<正>豪威集团发布了产品级CIS/EVS融合视觉芯片OV60B10。通过对两者的融合,在一颗芯片上集合2类传感器的特性。OV60B10芯片采用了3D Stack工艺制造,通过将CIS、EVS、ISP/ESP三层wafer整合到性能最优、体积最小的状态。wafer间通过混合键合技术实现高密度的像素级连接,  相似文献   

14.
MEMS加速度计等传感器检测精度受机械元件加工、电路制作、封装工艺等方面影响,其中机械热应力的影响尤为显著。为降低热应力,提出了一种基于多层嵌套环驻波特性的应力隔离结构设计,利用嵌套环的驻波振动特性,通过多层嵌套环逐级吸收传递至敏感结构的能量,从而达到隔离锚点处热应力的效果。通过有限元方法计算了不同嵌套环在热应力下变形情况,并研究了键合残余热应力与温度变化热应力对加速度计敏感结构频率、正应力和切应力的影响规律,得出在不同结构布局和尺寸参数下设计的应力隔离效率。对于正应力而言,应力隔离效率最优可以达到99.98%;对于切应力而言,应力隔离效率最优可以达到99.53%。结果表明,多层嵌套环应力隔离结构在特定布局和尺寸条件下的应力隔离效果优于现有的框架式应力隔离结构。  相似文献   

15.
为解决特种压力传感器结构的封装难题,提出了三种能够适用于200°C高温条件下的先进封装技术.通过有限元模拟,确定了采用低温玻璃键合技术对多种压力传感器进行封装,分析得出了适合的中间键合层厚度.选定了高强度低膨胀基底合金材料,制定了低温玻璃键合的工艺流程,采用先进的丝网印刷工艺确保中间键合层厚度.实验表明经过该工艺封装的压力传感器在高温下具有可靠的性能,能满足现代工业测量需求.  相似文献   

16.
基于带图形的硅衬底上制备硅薄膜的技术   总被引:2,自引:0,他引:2  
对硅基MEMS的可动部件很多都是采用在带图形的硅衬底上制备的硅薄膜通过深槽腐蚀释放获得的特点,开展在带图形的硅衬底上制备硅薄膜技术研究,得到一种通过两次硅硅键合、减薄抛光、一次湿法腐蚀硅相结合的在带图形的硅衬底上制备硅薄膜的有效方法,该方法制备出了的薄膜厚度为10 μm,均匀性为±0.5μm,达到了厚膜SOI材料制备的指标要求,硅薄膜完好率达到70%以上,为硅基MEMS的可动部件的制备打下了坚实的基础.  相似文献   

17.
封装热应力是导致MEMS器件失效的主要原因之一,本文设计了一种MEMS高g加速度传感器,并仿真研究了传感器在封装过程中的热应力及影响其大小的因素。根据封装工艺,建立设计的高g加速度传感器封装的有限元模型,利用AN-SYS软件仿真传感器在不同的贴片工艺中受到的热应力及影响热应力的因素。结果显示,在封装中,与直接贴片到管壳底部相比,MEMS高g加速度传感器芯片底面键合高硼硅玻璃后再贴片到管壳底部时,封装热应力可从135MPa降低到33MPa;在贴片工艺中,基板的热膨胀系数和贴片胶的弹性模量、热膨胀系数及厚度是影响封装热应力的主要因素;在健合工艺中,基板和键合温度主要影响到热应力的大小。  相似文献   

18.
随着碳化硅(SiC)材料的MEMS器件在恶劣环境测量中的应用前景和迫切需求,进行了碳化硅的直接键合实验.研究了工艺条件对键合样品力学性能的影响,同时借助激光共聚焦扫描显微镜(CLSM)、扫描电子显微镜(SEM)、能谱仪(EDS)和拉曼光谱仪等对碳化硅键合样品界面的微观结构进行了分析.结果表明:退火温度和加载压力是影响键合效果的关键性因素.当退火温度为1 300℃,加载压力为3 MPa和退火时间为3 h时,此时键合样品的气密性非常好,力学性能达到最佳,键合强度2 MPa.最后通过样品微观界面分析表明碳化硅直接键合的机理为界面氧化硅过渡层的形成及粘性流动与碳化硅和碳化硅的熔融直接键合.  相似文献   

19.
设计了一种适合于高gn值压阻式微加速度计圆片级封装的结构,解决了芯片制造工艺过程中电极通道建立、焊盘保护、精确划片等关键技术。采用玻璃—硅—玻璃三层阳极键合的方式进行圆片级封装,较好地解决了芯片密封性、小型化和批量化等生产难题。在4 in生产线上制作的高gn值压阻式微加速度计样品,尺寸仅为1 mm×1 mm×0.8 mm;对传感器进行的校准与抗冲击性能测试,结果表明:样品具备105gn的抗冲击能力、0.15μV/gn/V的灵敏度以及200 kHz的谐振频率。  相似文献   

20.
利用MEMS(微机电系统)工艺中的扩散,刻蚀,氧化,金属溅射等工艺制备出SOI高温压力敏感芯片,并通过静电键合工艺在SOI芯片背面和玻璃间形成真空参考腔,最后通过引线键合工艺完成敏感芯片与外部设备的电气连接.对封装的敏感芯片进行高温下的加压测试,高温压力测试结果表明,在21℃(常温)至300℃的温度范围内,传感器敏感芯片可在压力量程内正常工作,传感器敏感芯片的线性度从0.9 985下降为0.9 865,控制在较小的范围内.高温压力下的性能测试结果表明,该压力传感器可用于300℃恶劣环境下的压力测量,其高温下的稳定性能为压阻式高温压力芯片的研制提供了参考.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号