首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two new D–A copolymers containing benzotriazole (BTz) acceptor unit and different donor units of benzodithiophene (BDT) and 2,7-carbazole, PBDT-DTBTz and PC-DTBTz, were synthesized for the application as donor materials in polymer solar cells (PSCs). By changing the donor units, the band gaps and the highest occupied molecular orbital (HOMO) energy levels of the copolymers could be finely tuned. PC-DTBTz exhibited the lower HOMO energy level of ?5.34 eV, and the lower HOMO energy level can lead to a higher open-circuit voltage (V oc) of 0.73 V in PC-DTBTz-based devices. The PCEs of the PSCs based on PBDT-DTBTz and PC-DTBTz blends with [6,6]-phenyl-C61 butyric acid methyl ester (PC61BM) were 1.55 and 1.33 %, respectively, under the illumination of AM1.5, 100 mW/cm2.  相似文献   

2.
3.
Soluble C60–N-vinylcarbazole copolymers with different C60 contents were synthesized in lithium naphthalene-initiated anionic polymerization reactions. 13C nuclear magnetic resonance (NMR) results provided strong evidence for the covalent attachment of poly(N-vinylcarbazole; PVK) units to the C60 cores. The chemical shifts located at 142.16, 143.21, 144.70, 145.61, 146.65, 147.09, 149.08 and 170.28 p.p.m. in the 13C NMR spectrum of the copolymer are assigned to the unsaturated carbon signals of the substituted C60 cage. Its ultraviolet–visible absorption spectrum tends to move to the longer wavelength compared with those of the N-vinylcarbazole (NVC) monomer and PVK, and the peak range also extended from about 350 to 640 nm due to charge-transfer interaction between C60 and N-ethylcarbazole units. X-ray diffraction evidence suggests that the structure of the resultant copolymer might be a layered structure. Like the C60 chemically modified PVK, this material also exhibits good photoconductivity and temperature sensitivity. An unusual temperature dependence of the ESR spectrum is observed. In addition, it is also found that both [60] fullerene polyanion salts [(Cn-60) M+n, M=Li, Na, K] and fullerene itself are unable to initiate the polymerization of such monomers as N-vinylcarbazole, styrene and acrylonitrile, etc. © 1998 Kluwer Academic Publishers  相似文献   

4.
New rhenium-containing composites were synthesized by thermodestruction of different rhenium complexes. The composites consist of rhenium-containing nanoparticles stabilized by low-density polyethylene matrix. The structure of composites was characterized by means of TEM, EDS, XRD, EXAFS and EMR. Transmission electron microscope images illustrate that the rhenium-containing nanoparticles are 15.0 ± 0.3 nm in size. The particles consist of Re, Re2O7, ReO3 and ReO2. In the electrophysical measurements it was found that permittivity and attenuation of microwave radiation correlate with composition of rhenium-containing nanoparticles.  相似文献   

5.
《Composites Part B》2013,44(8):3192-3197
New rhenium-containing composites were synthesized by thermodestruction of different rhenium complexes. The composites consist of rhenium-containing nanoparticles stabilized by low-density polyethylene matrix. The structure of composites was characterized by means of TEM, EDS, XRD, EXAFS and EMR. Transmission electron microscope images illustrate that the rhenium-containing nanoparticles are 15.0 ± 0.3 nm in size. The particles consist of Re, Re2O7, ReO3 and ReO2. In the electrophysical measurements it was found that permittivity and attenuation of microwave radiation correlate with composition of rhenium-containing nanoparticles.  相似文献   

6.
A series of polystyrene-graft-PEG6000 copolymers were synthesized as new kinds of polymeric solid–solid phase change materials (SSPCMs). The synthesized SSPCMs storage latent heat as the soft segments PEG6000 of the copolymers transform from crystalline phase to amorphous phase and therefore they can keep its solid state during the phase transition processing. The graft copolymerization reaction between polystyrene and PEG was verified by Fourier transform infrared (FT-IR) and 1H NMR spectroscopy techniques. The morphology of the synthesized SSPCMs was characterized by polarization optical microscopy (POM). Thermal energy storage properties, thermal reliability and thermal stability of the synthesized SSPCMs were investigated by differential scanning calorimetry (DSC) and thermogravimetric (TG) analysis methods. The DSC results showed that the synthesized SSPCMs had typical solid–solid phase transition temperatures in the range of 55–58 °C and high latent heat enthalpy in the range of 116–174 J g−1. The TG analysis findings showed that the synthesized SSPCMs had high thermal durability above their working temperatures. Also, thermal conductivity measurements indicated that the synthesized PCMs had higher thermal conductivity compared to that of polystyrene. The synthesized polystyrene-graft-PEG6000 copolymers as new kinds of SSPCMs could be used for thermal energy storage.  相似文献   

7.
The objective of this study was to characterize the methylpoly (ethylene glycol)-poly (lacticacid-co-glycolicacid)-poly (ethylene-glycol) (MeO-PEG-PLGA-PEG-OMe, abbreviation as PELGE) copolymers as intravenous injection drug delivery carriers and their degradation behavior in vitro. A series of MeO-PEG-PLGA-PEG-OMe copolymers with various molar ratios of lactic to glycolic acid and various molecular weights and different MeO-PEG contents were synthesized by ring-opening polymerization in the presence of MeO-PEG with molar masses of 2000 and 5000, using stannous octoate as the catalyst. The hydrophilicity of PELGE copolymers, evaluated by contact angle measurements, was found to increase with an increase in their MeO-PEG contents. Methylpoly (ethylene glycol)-poly (lacticacid-co-glycolicacid) (MeO-PEG-PLGA, abbreviation as PELGA) nanoparticles and PELGE nanoparticles were prepared using the emulsion-solvent evaporation technique (o/w) with Pluronic F68 (Poloxamer 188 NF) as emulsifier in the external aqueous phase. The degradation behavior of the nanoparticles was evaluated by the lactate generation with time upon their in vitro incubation in PBS (pH 7.4). The rate of in vitro degradation of the PELGE or PELGA nanoparticles depended on their composition, increasing with an increase in the proportion of MeO-PEG or LA in the copolymer chains. The degradation rate was slower at higher lactide: glycolide ratio. The lower the molecular weight of PELGE; the higher the degradation rate of the nanoparticles.  相似文献   

8.
Bismuth–antimony–tellurium-based nanopowders were fabricated by a chemical process in which dissolved Bi, Te and Sb salts were directly reduced in each element via surfactant-assistant polyol reducing agents. XRD patterns of the synthesized nanopowders showed that the formed phases correspond mainly to (Bi0.5Sb0.5)2Te3 and Bi0.5Sb1.5Te3, respectively. The phases revealed that the three different elements were stably alloyed as ternary composition in one powder via the simple chemical route. The nanopowders were consolidated into bismuth telluride-based bulk materials that exhibited electrical resistivity above 5.6 × 10?5 Ωm, 150 μ V/K of the Seebeck coefficient and 0.7 W/mK of thermal conductivity at room temperature. These results showed that p-type thermoelectric nanopowders obtained from a simplified chemical process could be used in making thermoelectric materials towards high performances.  相似文献   

9.
When a proton exchange membrane (PEM) based fuel cell is placed in service, hygrothermal stresses develop within the membrane and vary widely with internal operating environment. These hygrothermal stresses associated with hygral contraction and expansion at the operating conditions are believed to be critical in membrane mechanical integrity and durability. Understanding and accurately modeling the viscoelastic constitutive properties of a PEM is important for making hygrothermal stress predictions in the cyclic temperature and humidity environment of operating fuel cells. The tensile stress relaxation moduli of a commercially available PEM, Gore-Select® 57, were obtained over a range of humidities and temperatures. These tests were performed using TA Instruments 2980 and Q800 dynamic mechanical analyzers (DMA), which are capable of applying specified tensile loading conditions on small membrane samples at a given temperature. A special humidity chamber was built in the form of a cup that encloses tension clamps of the DMA. The chamber was inserted in the heating furnace of the DMA and connected to a gas humidification unit by means of plastic tubing through a slot in the chamber. Stress relaxation data over a temperature range of 40–90°C and relative humidity range of 30–90% were obtained. Thermal and hygral master curves were constructed using thermal and hygral shift factors and were used to form a hygrothermal master curve using the time temperature moisture superposition principle. The master curve was also constructed independently using just one shift factor. The hygrothermal master curve was fitted with a 10-term Prony series for use in finite element software. The hygrothermal master curve was then validated using longer term tests. The relaxation modulus from longer term data matches well with the hygrothermal master curve. The long term test showed a plateau at longer times, suggesting an equilibrium modulus.  相似文献   

10.
11.
Meso- and microporous nitrogen-containing carbons, characterized by homogeneous meso- (V = 1.00 cm3/g, D = 3.5 nm) and microporous (V up to 0.26 cm3/g, D ≈ 0.5 nm) structure, and the presence of basic groups (up to 1.7 mmol/g) were obtained by matrix and bulk carbonization of sucrose in the presence of melamine or urea. It is shown that obtained N-containing microporous carbons possess good interfacial capacitance (0.21 F/m2) and they are characterized with stability during repeated charge–discharge cycles. Synthesized N-containing nanoporous carbons show higher adsorption of carbon dioxide (up to 6.3 mmol/g at ?20 °C) than the samples without nitrogen (up to 3.9 mmol/g at ?20 °C).  相似文献   

12.
Significantly light weight magnesium composite foams are synthesised by addition of fly ash cenosphere particles (waste from coal-fired power plants) in biocompatible pure magnesium using solidification-based disintegrated melt deposition technique. The density of the composite foams synthesised in this study approaches that of plastics- and polymer-based composites. Microstructure development of Mg/cenosphere composite foams was favourable as they exhibited better dimensional stability (reduced coefficient of thermal expansion) and remarkable improvements in tensile strengths, compressive strengths, compressive total strain and microhardness. The present study highlights the processing, microstructure and mechanical properties of Mg/cenosphere composite foams which hold great potential as light weight metal-based green materials for diverse weight critical applications spanning from engineering to biomedical sector.  相似文献   

13.
Nanocomposites based on natural rubber and nano-sized nickel were synthesized by incorporating nickel nanoparticles in a natural rubber matrix for various loadings of the filler. Structural, morphological, magnetic and mechanical properties of the composites were evaluated along with a detailed study of dielectric properties. It was found that nickel particles were uniformly distributed in the matrix without agglomeration resulting in a magnetic nanocomposite. The elastic properties showed an improvement with increase in filler content but breaking stress and breaking strain were found to decrease. Dielectric permittivity was found to decrease with increase in frequency, and found to increase with increase in nickel loading. The decrease in permittivity with temperature is attributed to the high volume expansivity of rubber at elevated temperatures. Dielectric loss of blank rubber as well as the composites was found to increase with temperature.  相似文献   

14.
The effect of 0–4 wt-% Sn addition on the microstructure and tensile properties of AZ80 alloys was investigated. The results indicated that Mg2Sn particles were barely formed during the extrusion process until the content of Sn is >2 wt-%. The dislocation density in alloys after extrusion declined with the addition of Sn due to the promotion of dynamic recrystallisation after adding Sn. In aging treatment, Mg17Al12 precipitates were promoted by Sn and the phases distributed uniformly at low density level of dislocation. The AZ80-2 wt-% Sn alloy possessed the excellent tensile properties in as extruded and as aged state.  相似文献   

15.
A novel Fibre–Metal Laminates (FMLs) based on carbon fibre reinforced PMR polyimide were prepared using a hot press process in this paper. Pre-treatment on the titanium surface were conducted prior to laminating. Scanning Electron Microscope (SEM) were used to observe the morphologies of the titanium and the cross-sections of the FMLs. SEM results showed that micro-roughness structures were formed on the titanium surface after anodization. This structure enhanced the interlaminar bond strength between titanium and polyimide. Flexural and Interlaminar shear (ILSS) tests showed that the FMLs possess excellent flexural and interlaminar properties at both room temperature and elevated temperature. Thermostability tests proved that the FMLs based on carbon fibre reinforced PMR polyimide offered excellent thermal properties. It is shown that no delamination appears between titanium layer and the fibre-reinforced polyimide layer after 1000 times thermal shock.  相似文献   

16.
Journal of Materials Science: Materials in Electronics - In the present contribution, grapheme–manganese oxide hybrid nanostructures (G/MnO2) were synthesized via rapid and facile microwave...  相似文献   

17.
Ni–B coatings are extremely hard and wear resistant with decent anticorrosion properties which make them suitable for automotive, aerospace, petrochemical, plastic, optics, nuclear, electronics, computer, textile, paper, food and printing industries. However, further improvement in properties is essential to address more challenging requirements and new developments. In the present study, Ni–B and novel Ni–B–CeO2 composite coatings were electrodeposited (ED) on mild steel substrates using dimethylamine borane (DMAB) as a reducing agent. A comparison of properties of Ni–B and Ni–B–CeO2 coatings is presented to elucidate the useful role of CeO2 addition. The structural analyses indicate that Ni–B coatings are amorphous in their as deposited state. However, addition of CeO2 into Ni–B matrix considerably improves the crystallinity of the deposit. The surface morphology study reveals the formation of uniform, dense and fine-grained deposit in both Ni–B and Ni–B–CeO2 composite coatings. However, Ni–B–CeO2 composite coatings exhibit high surface roughness. The nano mechanical properties show that the addition of CeO2 particles into Ni–B matrix results in remarkable improvement in mechanical properties (hardness and modulus of elasticity) which may be attributed to dispersion hardening of Ni–B matrix by CeO2 particles. The electrochemical polarization tests confirm that the addition of CeO2 improves the corrosion resistance of Ni–B coatings. This improvement in corrosion behavior may be ascribed to the reduction in active area of Ni–B coatings by the presence of inactive CeO2 particles into Ni–B matrix.  相似文献   

18.
A novel asymmetrical D–A zinc porphyrin derivative with dimehtyl triphenylamine (donor unit) and methyl benzoate (acceptor unit) as para-arms was first synthesized. Then, two new copolymers (P1 and P2) containing D–A zinc porphyrin derivatives were synthesized by the Stille coupling method and applied in PSCs. Their structures, photophysical and electrochemical properties were characterized by 1H NMR, 13C NMR, gel permeation chromatography, thermogravimetric analysis, UV–vis absorption spectroscopy, photoluminescence spectroscopy, and cyclic voltammetry. The two copolymers exhibited good thermal stability and film-forming ability. The results showed that P1 containing D–A zinc porphyrin exhibits a strong absorption in the range of 400–500 nm. By the introduction of thiophene derivative with 4,7-di(4-hexylthiophen-2-yl)benzothiadiazole (T-DTBT) conjugated side-chain unit, P2 showed broader absorption in the region of 300–650 nm than P1. The photoluminescence spectra made clear that charge transfer between the whole main chain and side chain can be effective. Cyclic voltammograms revealed that the LUMO energy levels of P2 was reduced in comparison with P1 due to the introduction of electron-deficient T-DTBT conjugated side-chain unit, indicating that electron-injection and transporting properties have been improved. Polymer solar cells were fabricated based on the blend of the copolymers and methanofullerene[6,6]-phenyl C61-butyric acid methyl ester (PC61BM). The PSC based on P2:PC61BM (1:2, w/w) exhibited a power conversion efficiency of 1.26% under AM 1.5, 100 mW cm−2.  相似文献   

19.
Thermal protection materials are necessary to protect structural components of launch vehicles during lift-off of launching system. The present study deals with the development of a novel thermally protected light rocket motor insulator compound (RMIC) of polyimide–silica filled EPDM nanocomposites. The insulation compound prepared for the studies comprised of aromatic polyimide and nanosilica particles. The addition of these materials in rocket insulator compound enhanced the multifunctional thermal and insulation characteristics. EPDM when grafted with maleic anhydride, contributed polarity in the non-polar EPDM matrix. Nanosilica contributes specifically better erosion resistance. SEM and TEM micrograph of EPDM nanocomposites exhibits good dispersion of nanosilica in polyimide–EPDM matrix. Nanocomposite formation was characterised by FTIR. Density, co-efficient of thermal expansion, thermal conductivity, ablation rate, specific heat, maximum thermal degradation, char yield and mechanical properties of the RMIC have been measured. This developmental study may find wide scope for commercial exploitation.  相似文献   

20.
Mg–Zn ferrite powders with the nominal composition Mg0.5Zn0.5Fe2O4 were synthesized via hydrothermal method, and their synthesis, magnetic properties and microstructures were studied. It was found that the pH value affected the amount of impurity Fe2O3 and the purity of ferrites greatly. It was also found excess Zn content (5 at.%) in starting materials was not helpful to synthesize pure spinel ferrite, while the prolonged reaction time was harmful for the formation of pure spinel structure. The specimens presented small coercivity lower than 10 Oe, which showed a typical magnetically soft behavior. With the increase of pH value, the saturation magnetization of specimens with excess Zn ions (5 at.%) kept increasing from 23.90 to 41.82 emu/g due to the decreasing amount of impurity Fe2O3. The study of microstructures showed that the large particles in powders were the aggregates of small nanoscale crystallites. The analysis of actual Zn and Mg content in synthesized ferrites confirmed that the best experimental conditions for synthesis of pure spinel Mg–Zn ferrite are the hydrothermal temperature is 200 °C, the reaction time is 8 h, the pH value is 12 and the excess amount of Zn(NO)3 in starting materials is 5 at.%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号