首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Two types of montmorillonite (MMT), natural sodium montmorillonite (Na-MMT) and organically modified montmorillonite (OMMT), in different amounts of 1, 2, 5, 10 and 25 phr (parts per hundred resin), were dispersed in rigid poly (vinyl chloride) by two different methods: solution blending and solution blending + melt compounding. The effects on morphology, thermal and mechanical properties of the PVC/MMT nanocomposites were studied by varying the amount of Na-MMT and OMMT in both methods. SEM and XRD analysis revealed that possible intercalated and exfoliated structures were obtained in all of the PVC/MMT nanocomposites. Thermogravimetric analysis revealed that PVC/Na-MMT nanocomposites have better thermal stability than PVC/OMMT nanocomposites and PVC. In general, PVC/MMT nanocomposites prepared by solution blending + melt compounding revealed improved thermal properties compared to PVC/MMT nanocomposites prepared by solution blending. Vicat tests revealed a significant decrease in Vicat softening temperature of PVC/MMT nanocomposites prepared by solution blending + melt compounding compared to unfilled PVC.  相似文献   

2.
Graphite oxide (GO)/poly(methyl methacrylate) (PMMA) nanocomposites were prepared by a novel method utilizing macroazoinitiator (MAI). The MAI, which has a poly(ethylene oxide) (PEO) segment, was intercalated between the lamellae of GO to induce the inter-gallery polymerization of methyl methacrylate (MMA) and exfoliate the GO. The morphological, conductivity, thermal, mechanical and rheological properties of these nanocomposites were examined and compared with those of intercalated nanocomposites prepared by polymerization with the normal radical initiator, 2,2′-azobisisobutyronitrile. The improvement in conductivity by GO was more evident in exfoliated nanocomposites compared to that of intercalated nanocomposites. For example, a conductivity of 1.78 × 10−7 S/cm was attained in the exfoliated nanocomposite prepared with 2.5 parts GO per 100 parts MMA, which was about 50-fold higher than that of the intercalated nanocomposite. The thermal, mechanical and rheological properties also indicate that thin GO with a high aspect ratio is finely dispersed and effectively reinforced the PMMA matrix in both exfoliated and intercalated nanocomposites.  相似文献   

3.
通过溶液共混法制备了氧化石墨烯(GO)分散均匀的聚氯乙烯(PVC)/GO纳米复合薄膜,研究了薄膜的力学性能和热稳定性能。结果表明,微量GO能大幅度提高PVC的模量和拉伸强度,且保持较高的断裂伸长率。在PVC中添加质量分数为0.12%的GO,PVC的拉伸强度提高63%,杨氏模量提高20%;添加量为0.60%时,PVC的拉伸强度提高125%,杨氏模量提高126%.添加GO还能提高PVC的起始分解温度、最大分解温度以及PVC的成碳量。GO片层具有较高的强度和模量、GO在高分子基体内的均匀分散、GO和PVC之间较强的相互作用、GO与PVC的层状结构,是其力学性能提高的主要原因.  相似文献   

4.
Numerous carbon nanostructures have been investigated in the last years due to their excellent mechanical properties. In this work, the effect of the addition of graphene oxide (GO) nanoparticles to UHMWPE and the optimal %wt GO addition were investigated. UHMWPE/GO nanocomposites with different GO wt% contents were prepared and their mechanical, thermal, structural and wettability properties were investigated and compared with virgin UHMWPE. The results showed that the thermal stability, oxidative resistance, mechanical properties and wettability properties of UHMWPE were enhanced due to the addition of GO. UHMWPE/GO materials prepared with up to 0.5 wt% GO exhibited improved characteristics compared to virgin UHMWPE and nanocomposites prepared with higher GO contents.  相似文献   

5.
The PMMA nanocomposites were prepared by melt processing method. The influence of organoclay loading on extent of intercalation, thermal, mechanical and flammability properties of poly(methyl methacrylate) (PMMA)-clay nanocomposites were studied. Three different organoclay modifiers with varying hydrophobicity (single tallow vs. ditallow) were investigated. The nanocomposites were characterized by using wide angle X-ray diffraction, transmission electron microscopy, thermogravimetric analysis, differential scanning calorimetry (DSC), and tensile tests. The intercalation of polymer chain within the silicate galleries was confirmed by WAXD and TEM. Mechanical properties such as tensile modulus (E), tensile strength, percentage elongation at break and impact strength were determined for nanocomposites at various clay loadings. Overall thermal stability of nanocomposites increased by 16-17 °C. The enhancement in Tg of nanocomposite is merely by 2-4 °C. The incorporation of maleic anhydride as compatibilizer further enhanced all the properties indicating improved interface between PMMA and clay. The flammability characteristics were studied by determining the rate of burning and LOI.  相似文献   

6.
Graphene, a single layer of carbon atoms in a two-dimensional lattice, has attracted considerable attention owing to its unique physical, chemical and mechanical properties. In particular, because of its excellent thermal properties such as high thermal conductivity and good thermal stability, graphene has been regarded as a one of the promising candidates for the reinforcing fillers on the polymer composites field. In this study, we prepared the poly(methyl methacrylate) (PMMA)/graphene oxide (GO) nanocomposite by a simple solution mixing process, and examined the thermal reinforcing effects of GO on a PMMA matrix. Using thermogravimetric analysis, differential scanning calorimeter, and thermal conductivity meter, we investigated the effects of GO on the thermal properties of PMMA/GO nanocomposites. With 3 wt% of GO loading, the glass transition temperature (Tg) of the PMMA/GO nanocomposite were increased by more than 7 degrees C and the thermal conductivity of which also improved 1.8 times compared to pure PMMA.  相似文献   

7.
The effects of various functionalized multi-walled carbon nanotubes (MWCNTs) on morphological, thermal, and mechanical properties of an epoxy based nanocomposite system were investigated. Chemical functionalization of MWCNT by oxidation (MWCNT-COOH) and direct-fluorination (MWCNT-F) were confirmed by FTIR, Raman spectroscopy, and TGA. Utilizing in situ polymerization, 1 wt% loading of MWCNT was used to prepare epoxy-based nanocomposites. Compared to the neat epoxy system, nanocomposites prepared with MWCNT-COOH showed 25.5% increase in ultimate flexural strength and 54.8% increase in flexural modulus. A decrease in strength was observed for the MWCNT-F nanocomposites. The premature degradation was attributed to a presumable catalyzation by hydrofluoric acid, HF, which evolved from the MWCNT-F during the curing process. However, only the MWCNT-F nanocomposites showed 22% increase in thermal properties (Tg). All nanophased systems showed increase in storage modulus.  相似文献   

8.
The present research work demonstrated the effect of graphene oxide (GO) on the physical, mechanical, thermo-mechanical etc., properties of neoprene (CR) and chlorosulfonated polyethylene (CSPE) vulcanizates. CR and CSPE based nanocomposites were prepared by both solution intercalation and melt intercalation methods. The changes obtained in the morphology, cure characteristics, mechanical, thermal, thermo-mechanical properties of the rubber nanocomposites have been widely investigated. X-ray diffraction analysis (XRD) and transmission electron microscopic (TEM) analysis of the samples revealed partial exfoliated structure of GO containing rubber composites. Mechanical, thermal, cure and thermo-mechanical properties of the elastomeric nanocomposites were improved compared to the neat rubbers.  相似文献   

9.
The multi-walled carbon nanotube (MWNT) reinforced thermoplastic polyurethane (TPU) nanocomposites were prepared through melt compounding method followed by compression molding. The spectroscopic study indicated that a strong interfacial interaction was developed between carbon nanotube (CNT) and the TPU matrix in the nanocomposites. The microscopic observation showed that the CNTs were homogeneously dispersed throughout the TPU matrix well apart from a few clusters. The results from thermal analysis indicated that the glass transition temperature (Tg) and storage modulus (E′) of the nanocomposites were increased with increase in CNTs content and their thermal stability were also improved in comparison with pure TPU matrix. The rheological analysis showed the low frequency plateau of shear modulus and the shear thinning behavior of the nanocomposites. The electrical behaviors of the nanocomposites are increased with increase in weight percent (wt%) of CNT loading. The mechanical properties of nanocomposites were substantially improved by the incorporation of CNTs into the TPU matrix.  相似文献   

10.
The properties of polypropylene (PP) nanocomposites are dependent on the quaternary ammonium salt in the montmorillonite (MMT). A nanocomposite with C-15A, which has a high cation exchange capacity (CEC), exhibits an increase in its impact properties, while one prepared with C-20A, which has a low CEC, shows an increase in the flexural modulus. In order to obtain enhancements in both properties, PP nanocomposites were prepared using a combination of 1:1 of C-15A/C-20A. X-ray, TEM, thermal properties, dynamical mechanical analysis (DMA), and mechanical tests were used to evaluate the properties of this novel mixture. Nanocomposites of partially exfoliated morphology were obtained, especially when 5 wt% of poly(propylene-graft-maleic anhydride) (PP-g-MA) was used. The mechanical tests showed that the use of a 1:1 mixture of C-15A/C-20A caused a simultaneous gain of approximately 12% in flexural modulus and a five times higher impact strength. In addition, the dispersion of the clay was more homogeneous, with the absence of agglomerated structures that were present when either the individual C-15A or C-20A was used. The DMA results showed that while the organoclay improved the modulus of PP, the Tg was decreased slightly.  相似文献   

11.
Nanodiamond (ND)/poly (lactic acid) (PLA) nanocomposites with potential for biological and biomedical applications were prepared by using melting compound methods. By means of transmission electron microscopy (TEM), Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), Thermogravimetric analyses (TGA), Dynamic mechanical analyses (DMA), Differential scanning calorimetry (DSC) and Tensile test, the ND/PLA nanocomposites were investigated, and thus the effect of ND on the structural, thermal and mechanical properties of polymer matrix was demonstrated for the first time. Experimental results showed that the mechanical properties and thermal stability of PLA matrix were significantly improved, as ND was incorporated into the PLA matrix. For example, the storage modulus (E′) of 3 wt% ND/PLA nanocomposites was 0.7 GPa at 130 °C which was 75% higher than that of neat PLA, and the initial thermal decomposition was delayed 10.1 °C for 1 wt% ND/PLA nanocomposites compared with the neat PLA. These improvements could be ascribed to the outstanding physical properties of ND, homogeneous dispersion of ND nanoclusters, unique ND bridge morphology and good adhesion between PLA matrix and ND in the ND/PLA nanocomposites.  相似文献   

12.
The effects of kenaf and poly (methyl methacrylate grafted kenaf on the thermal and dynamic mechanical properties of poly (vinyl chloride), PVC and ethylene vinyl acetate, EVA blends were investigated. The PVC/EVA/kenaf composites were prepared by mixing the grafted and ungrafted kenaf fiber and PVC/EVA blend using HAAKE Rheomixer at a temperature of 150 °C and the rotor speed at 50 rpm for 20 min. The composites were subjected to Differential Scanning Calorimetric (DSC), Thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA), Fourier transform infrared (FTIR) and Scanning Electron Microscopy (SEM) studies. The DSC data revealed that the crystallinity of the EVA decreased with the addition of 30% grafted and ungrafted kenaf fibers. TGA and derivative thermogravimetric (DTG) curves displayed an increase in the thermal stability of the composites upon grafting of the fiber. Studies on DMA indicate that the Tg of the PVC and EVA in the PVC/EVA/kenaf composites has been shifted to higher temperature with the addition of the kenaf fiber. The presence of PMMA on the surface of grafted kenaf fiber was further confirmed by the analytical results from FTIR. The morphology of fractured surfaces of the composites, which was examined by a scanning electron microscope, showed the adhesion between the kenaf fiber and the PVC/EVA matrix was improved upon grafting of the kenaf fiber.  相似文献   

13.
The potential to improve the mechanical, thermal, and optical properties of poly(methyl methacrylate) (PMMA)/clay nanocomposites prepared with clay containing an organic modifier was investigated. Pristine sodium montmorillonite clay was modified using cocoamphodipropionate, which absorbs UVB in the 280–320 nm range, via ion exchange to enhance the compatibility between the clay platelets and the methyl methacrylate polymer matrix. PMMA/clay nanocomposites were synthesized via in situ free-radical polymerization. Three types of clay with various cation-exchange capacities (CEC) were used as inorganic layered materials in these organic–inorganic hybrid nanocomposites: CL42, CL120, and CL88 with CEC values of 116, 168, and 200 meq/100 g of clay, respectively. We characterized the effects of the organoclay dispersion on UV resistance, effectiveness as an O2 gas barrier, thermal stability, and mechanical properties of PMMA/clay nanocomposites. Gas permeability analysis demonstrated the excellent gas barrier properties of the nanocomposites, consistent with the intercalated or exfoliated morphologies observed. The optical properties were assessed using UV–Visible spectroscopy, which revealed that these materials have good optical clarity, UV resistance, and scratch resistance. The effect of the dispersion capability of organoclay on the thermal properties of PMMA/clay nanocomposites was investigated by thermogravimetric analysis and differential scanning calorimetry; these analyses revealed excellent thermal stability of some of the modified clay nanocomposites.  相似文献   

14.
Poly(methyl methacrylate) (PMMA)/dodecylamine templated lamellar aluminophosphate (DDA-LAP) intercalated nanocomposites are prepared by in situ bulk polymerization of MMA. The intercalated structure is characterized. With the intercalation of DDA-LAP in PMMA matrix, the glass-transition temperatures of nanocomposites (Tg) are increased. The nanocomposites obtained keep relatively high transparency in optical property and have a significant improvement in mechanical properties and thermal stability. The mechanism for the properties enhancement is investigated. The strong interfacial interaction between the aluminophosphate layers and the PMMA chains, the homogeneously distribution and the graphitized char formation during heating are three key roles for the properties improvement.  相似文献   

15.
This current work is concerned with the pretreatment of sugarcane bagasse (SCB) by mechanical activation (MA) using a self-designed stirring ball mill and surface modification of SCB using aluminate coupling agent (ACA). The untreated and differently treated SCBs were used to produce composites with poly(vinyl chloride) (PVC) as polymer matrix. The activation grade (Ag) measurement and Fourier transform infrared (FTIR) analysis of SCB showed that MA enhanced the condensation reaction between ACA and hydroxyl groups of the SCB fibres, which obviously increased the hydrophobicity of SCB. It was found that the mechanical properties of both the PVC composites reinforced by SCB with and without ACA modification increased with increasing milling time (tM). Scanning electron microscopy (SEM) analysis showed that MA pretreatment significantly improved the dispersion of SCB in the composites and interfacial adhesion between SCB and PVC matrix, resulting in better mechanical properties of the composites.  相似文献   

16.
In this study, graphite oxides (GOs) with different oxidation degrees and graphene nanosheets were prepared by a modified Hummers method and thermal exfoliation of the prepared GO, respectively. Polystyrene (PS)/GO and PS/graphene nanocomposites were prepared via melt blending. X-ray diffraction results showed that GOs and graphene were exfoliated in the PS composites. It could be observed from the scanning electron microscope images that GOs and graphene were well dispersed throughout the matrix without obvious aggregates. Dynamic mechanical thermal analysis suggested that the storage modulus for the PS/GO1 and PS/graphene nanocomposites was efficiently improved due to the low oxygen content of GO1 and the elimination of the oxygen groups from GO. The flammability of nanocomposites was evaluated by thermal gravimetric analysis and cone calorimetry. The results suggested that both the thermal stability and the reduction in peak heat release rate (PHRR) decreased with the increasing of the oxygen groups in GOs or graphene. The optimal flammability was obtained with the graphene (5 wt%), in which case the reduction in the PHRR is almost 50 % as compared to PS.  相似文献   

17.
The current investigation deals with the synthesis and application of functionalised acrylonitrile-butadiene rubber (NBR-g-MAH) as an impact modifier and compatibilising agent in the recycled blend of poly(vinyl chloride) and poly(methylmethacrylate). The performance of NBR as an impact modifier was improved by grafting with maleic anhydride. The varied concentration of NBR-g-MAH/NBR mixture has differed effects on the mechanical, thermal and morphological properties of the recycled blend. The recycled blend with 9 wt% of NBR-g-MAH/NBR mixture shows optimum impact strength and elongation-at-break. Moreover, Fourier-transform infrared spectroscopy analysis confirms interactions with polar functionalities in the recycled blends. Differential scanning calorimetry and scanning electron microscope analyses suggest partial miscibility as well as compatibility of the polymeric constituents in the blend. Additionally, thermal gravimetric analysis shows higher thermal stability for the modified recycled blend as compared to its parent blend.  相似文献   

18.
A castor oil-derived diglycidyl ester plasticizer (C26-DGE) was prepared and incorporated into poly(vinyl chloride) (PVC) for the first time. The chemical structure of the product was characterized by Fourier transform infrared spectroscopy (FTIR), proton nuclear magnetic resonance (1H-NMR), and carbon-13 nuclear magnetic resonance (13C-NMR). The plasticizing effects of C26-DGE as a primary or secondary plasticizer for the commercial plasticizer dioctyl phthalate (DOP) were studied. The mechanical properties, thermal stability, and migration stabilities of PVC films were investigated using dynamic mechanical analysis, thermogravimetric analysis (TGA), TGA-FTIR analysis, and PVC film surface analysis. Tensile, volatility, and extraction tests were also done. The castor oil-based plasticizer was found to endow the PVC matrix with enhanced compatibility and flexibility. With partially or completely substituted DOP, C26-DGE significantly increased the thermal stability of PVC blends. Furthermore, the volatility and extraction resistance of the novel plasticizers were generally superior to those of DOP. The interaction between the C26-DGE and PVC molecules and the thermal degradation process of PVC blends were also investigated.  相似文献   

19.
Mechanical and thermal properties of non-crimp glass fiber reinforced clay/epoxy nanocomposites were investigated. Clay/epoxy nanocomposite systems were prepared to use as the matrix material for composite laminates. X-ray diffraction results obtained from natural and modified clays indicated that intergallery spacing of the layered clay increases with surface treatment. Tensile tests indicated that clay loading has minor effect on the tensile properties. Flexural properties of laminates were improved by clay addition due to the improved interface between glass fibers and epoxy. Differential scanning calorimetry (DSC) results showed that the modified clay particles affected the glass transition temperatures (Tg) of the nanocomposites. Incorporation of surface treated clay particles increased the dynamic mechanical properties of nanocomposite laminates. It was found that the flame resistance of composites was improved significantly by clay addition into the epoxy matrix.  相似文献   

20.
Electrically conductive and thermally stable polyamide 6 (PA 6) nanocomposites were prepared through one-step in situ polymerization of ε-caprolactam monomer in the presence of electrically insulating and thermally unstable graphene oxide (GO) nanosheets. These nanocomposites show a low percolation threshold of ∼0.41 vol.% and high electrical conductivity of ∼0.028 S/m with only ∼1.64 vol.% of GO. Thermogravimetric analysis and X-ray photoelectron spectroscopy results of GO before and after thermal treatment at the polymerization temperature indicate that GO was reduced in situ during the polymerization process. X-ray diffraction patterns and scanning electron microscopy observation confirm the exfoliation of the reduced graphene oxide (RGO) in the PA 6 matrix. The low percolation threshold and high electrical conductivity are attributed to the large aspect ratio, high specific surface area and uniform dispersion of the RGO nanosheets in the matrix. In addition, although GO has a poor thermal stability, its PA 6 nanocomposite is thermally stable with a satisfactory thermal stability similar to those of neat PA 6 and PA 6/graphene nanocomposite. Such a one-step in situ polymerization and thermal reduction method shows significant potential for the mass production of electrically conductive polymer/RGO nanocomposites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号