首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Baihua Reservoir in Guizhou Province, China, experienced serious Hg contamination from Guizhou Organic Chemical Plant (GOCP) between 1971 and 1997. However, the biogeochemical cycling of Hg in this reservoir is not well studied. Sediment cores were collected in fall 2002, spring 2003 and in spring and fall 2004. THg and MeHg concentrations in all sediment profiles ranged from 0.26 to 38.9 mg/kg and from 0.5 to 27.5 μg/kg (d.w.), respectively. The distribution of THg in sediment cores was characterized by a few peaks, which may correspond to the Hg-containing wastewater discharge history of the GOCP. The average THg concentrations in sediments cores decreased from upstream to downstream due to the deposition of particulate Hg, which is the major form of Hg in water. THg and MeHg concentrations in pore water varied from 6.1 to 5860 ng/L and from 0.3 to 15.4 ng/L, respectively, which were significantly higher than levels in the overlying water column. Average diffusive flux from sediment to water is 1642 and 36 ng/m2/day for THg and MeHg. The spatial distribution of THg in pore water from upstream to downstream showed the same trend as the sediment, but MeHg in pore water did not show a declining pattern with distance from the GOCP. These results suggested that sediments experienced serious contamination of Hg, and the contaminated sediment is an important Hg contamination source to the overlying water.  相似文献   

2.
Methylmercury (MeHg) bioaccumulates in aquatic food webs and can pose health risks to animals at higher trophic levels. Characterization of MeHg production in and export from watersheds can help clarify exposure scenarios for aquatic life downstream. A number of studies have demonstrated that anoxic conditions in the saturated soils of wetlands can promote the production of MeHg, and these wetlands may be major sources of MeHg to connected water bodies. Here, we report in-stream loadings of total mercury (THg) and MeHg for five rivers in Minnesota (USA). The watersheds of these rivers differ widely in the proportion of land area made up by wetlands and in other land use, drainage, and soil characteristics. Export of THg from these rivers varied widely, with much higher loadings and annual average concentrations of THg in streams of the Minnesota River basin compared to streams in the headwater Mississippi River basin. In contrast and despite the apparent differences in the makeup of these watersheds, yields and annual average concentrations of MeHg were remarkably similar for the rivers studied here. Differences in land use/land cover, drainage, soils, and other characteristics of these watersheds influence the export of both THg and MeHg in these rivers, but overall MeHg yields vary less than THg yields.  相似文献   

3.
Mary Lake, St. George Lake, and Philips Lake are located in the Greater Toronto Area, Ontario, Canada. These lakes are relatively small and have no direct inflow and outflow channels. Mercury (Hg) input to the lakes comes mainly from atmospheric deposition. Sediment cores from the points of the maximum lake depth and surface sediment samples from the points of maximum lake depth to the bank of each lake were collected in October 2005. Total and methyl mercury concentrations in the pore water and sediments of these samples were determined. In these small lakes with high organic content, there was no correlation between organic content and total mercury (THg) in the samples throughout the entire sediment cores while strong positive correlation between these two parameters was observed in all the surface sediments. Compared with typical methylmercury (MeHg) depth-profiles of sediment cores in other studies, where MeHg concentrations and methylation rates decreased sharply with increasing depth, MeHg distributions in the sediment cores in this study showed that MeHg might have been produced not only in the upper sediment but also in the deeper sediments, which resulted in a larger MeHg reservoir in the sediment. Organic matter, to some extent, affected MeHg distributions in the samples throughout the entire sediment cores. Concentrations of MeHg in all the surface sediments, however, were not controlled by organic matter, whereas they were largely a function of water column depths. Total mercury concentrations in pore water were relatively homogenous in both the sediment cores and surface sediment while MeHg in pore water generally deceased with increasing depth in the sediment cores and increasing distance from the centre of the lakes in surface sediments. Methylmercury contributed 1% to 76% of THg in the pore water samples. Concentrations and distributions of MeHg in overlying water and sediment-surface water in Mary Lake and St. George Lake suggested that both in situ production of MeHg in lake water and the release of MeHg from sediment contributed to high MeHg in deep anoxic water.  相似文献   

4.
Estimates of mercury (Hg) loadings to the Arctic Ocean from circumpolar rivers have not considered biogeochemical changes that occur when river water is temporarily stored in large deltas (delta effect). There are also few data describing Hg changes across the freshwater-saltwater transition zone (FSTZ) of these rivers. We assessed temporal changes in unfiltered total mercury (THg) and methylmercury (MeHg) concentrations during open-water 2004 in the Mackenzie River upstream of the Mackenzie River delta, and in 6 floodplain lakes across an elevation gradient. These data were used to calculate Hg fluxes from the Mackenzie River and to evaluate a delta effect on Hg using an estimate of delta river water storage and a mixing analysis. Mean THg concentrations were highest in river water (9.17 ± 5.51 ng/L) and decreased up the lake elevation gradient. Mean MeHg concentrations were highest in lakes periodically connected to the river (0.213 ± 0.122 ng/L) and MeHg concentrations in elevated lakes showed a mid-summer peak. Results from the mixing analysis showed that the delta effect may be large enough to affect Hg loadings to the Arctic Ocean. THg concentrations exiting the delta (10.2 ng/L) were 16% lower than those entering (12.1 ng/L), whereas MeHg showed little change. We calculated 2.5-month (open-water) THg and MeHg fluxes from the Mackenzie River of 1208 and 8.4 kg. These fluxes are similar in magnitude to previous annual estimates in the arctic literature suggesting that previously published annual Hg fluxes from the Mackenzie River may be large underestimates. We also assessed changes in Mackenzie River water THg and MeHg concentrations as it crossed the FSTZ during an open-water cruise. THg decreased non-conservatively across the estuary from 3.8-0.6 ng/L, possibly due to mixing and particle settling. MeHg concentrations were variable and near detection. Our results show that the Mackenzie River estuary is a dynamic environment and may have important controls on Hg delivered to the Arctic Ocean.  相似文献   

5.
The presence of mercury in the river Idrijca (Slovenia) is mainly due to 500 years of mercury mining in this region. In order to understand the cycling of mercury in the Idrijca ecosystem it is crucial to investigate the role of biota. This study is part of an ongoing investigation of mercury biogeochemistry in the river Idrijca, focusing on the accumulation and speciation of mercury in the lower levels of the food chain, namely filamentous algae, periphyton and macroinvertebrates. Mercury analysis and speciation in the biota and in water were performed during the spring, summer and autumn seasons at four locations on the river, representing different degrees of mercury contamination. Total (THg) and methyl mercury (MeHg) were measured. The results showed that the highest THg concentrations in biota correlate well with THg levels in sediments and water. The level of MeHg is spatially and seasonally variable, showing higher values at the most contaminated sites during the summer and autumn periods. The percentage of Hg as MeHg increases with the trophic level from water (0.1-0.8%), algae (0.5-1.3%), periphyton (1.6-8.8%) to macroinvertebrates (0.1-100%), which indicates active transformation, accumulation and magnification of mercury in the benthic organism of this heavily contaminated torrential river.  相似文献   

6.
Previous studies have identified flooded landscapes (e.g., wetlands, impoundments) as sites of elevated methylmercury (MeHg) production. Here we report MeHg and total Hg (THg) concentrations and mass loadings in rivers in Minnesota during major flooding episodes in the summer of 2002. Frequent intense precipitation events throughout the summer resulted in extraordinarily wet conditions in east-central and northwestern Minnesota. Streamflow remained at record-setting high levels in many rivers and streams in these regions for several weeks. We observed high concentrations of MeHg (>1.4 ng/L) accompanied by high MeHg/THg ratios (0.39 to 0.50) in the Roseau River in northwestern Minnesota and in the Elk and Rum Rivers in east-central Minnesota. Very high MeHg mass loadings were observed in the Mississippi River just upstream of Minneapolis on July 17 (51 g MeHg/day) and July 23 (42 g MeHg/day), when MeHg concentrations at this site were 0.89 and 0.99 ng/L, respectively. The elevated MeHg concentrations in the Roseau River were associated with low dissolved oxygen and high dissolved reactive phosphorus concentrations, both of which are characteristic of anoxic waters. These rivers drain landscapes containing varying amounts of wetlands, and some of the MeHg discharged is thought to have been flushed from anoxic wetland soils. In addition, the flooding of vast areas of normally dry land surfaces probably also resulted in increased MeHg production, adding to the quantities of MeHg exported from these watersheds. Changing climate patterns are expected to result in more frequent heavy precipitation and flooding events in Minnesota. Our results suggest that as flooding and wet conditions in this region increase, the production of MeHg and its export from terrestrial areas to surface waters will increase also.  相似文献   

7.
Sediments are thought to be an important source of methylmercury (MeHg) to the water column of wetlands. We measured sediment MeHg pore water concentrations as a function of depth in four wetlands to determine the concentration gradient and used it determine sediment-water flux of MeHg. Fluxes of MeHg ranged from -1.60 to 10.02 ng m(-2) day(-1) and were shown to be a function of 1) redox conditions at the sediment-water interface, 2) oxygen gradient above the sediment surface, 3) water temperature, and 4) pore water and water column-dissolved sulphide. MeHg water column concentration in each of the four wetlands was positively correlated with MeHg concentrations present in surface sediment and pore water, and with the calculated sediment-water MeHg flux rate. In addition to MeHg, ethylmercury (EtHg) was detected in the sediment in all four wetlands, but not in the pore water or the water column. EtHg levels in sediment exceeded MeHg concentrations in two of the wetlands. This demonstrates that Hg ethylation is a significant part of the Hg cycle in some aquatic environments.  相似文献   

8.
Methylmercury in rivers draining cultivated watersheds   总被引:1,自引:0,他引:1  
Total mercury (THg) concentrations in streams draining cultivated watersheds in Minnesota, USA are strongly correlated with total suspended sediment (TSS) concentrations, varying widely in response to precipitation-driven inputs of soil-derived suspended sediments. Methylmercury (MeHg) concentrations in these waterways have not been studied, and little is known about mercury uptake mechanisms in resident fish populations. To begin to identify factors influencing MeHg concentrations and loadings in these streams, we measured THg and MeHg concentrations in unfiltered whole water samples from the Minnesota River and two of its major tributaries, the Blue Earth and Le Sueur Rivers. Land use in the watersheds of these rivers is over 90% row-crop agriculture, and extensive artificial drainage systems deliver runoff and associated solids quickly to local streams and rivers. THg concentrations were elevated (>10 ng/l) during much of Spring 2000 and part of the summer when runoff from precipitation events increased stream discharge and carried soil materials into the streams. Reduced precipitation resulted in low flow conditions from August through October, and THg concentrations decreased to <4.0 ng/l in all three rivers. MeHg concentrations in the Le Sueur River ranged from 0.07 to 0.42 ng/l between June and December. Higher MeHg concentrations (>0.2 ng/l) were measured during summer months when THg and TSS concentrations were high after precipitation events. Elevated MeHg concentrations were also observed in late October after leaf litter inputs. Conditions on the Blue Earth River were different, with elevated MeHg concentrations (>0.5 ng/l) observed during low flow in August and September. These higher concentrations coincided with a period of enhanced microbial growth stimulated by high late-summer temperatures. A late-October increase in MeHg concentration attributed to leaf litter inputs was also observed in this river. MeHg concentration trends in the Minnesota River were similar to those in the Blue Earth River. Indicators of biological productivity (chlorophyll a, volatile suspended solids, and total Kjeldahl nitrogen) were higher in the Blue Earth and Minnesota Rivers compared to the Le Sueur River, which may signal a connection between higher biological activity and increased MeHg concentrations.  相似文献   

9.
Total mercury (THg) and methylmercury (MeHg) concentrations were measured in the muscle of Arctic charr (Salvelinus alpinus) and in the water column of 4 lakes that are located in the French Alps. Watershed characteristics were determined (6 coverage classes) for each lake in order to evaluate the influence of watershed composition on mercury and methylmercury concentrations in fish muscle and in the water column. THg and MeHg concentrations in surface water were relatively low and similar among lakes and watershed characteristics play a major role in determining water column Hg and MeHg levels. THg muscle concentrations for fish with either a standardized length of 220 mm, a standardized age of 5 years or for individualuals did not exceed the 0.5 mg kg− 1 fish consumption advisory limit established for Hg by the World Health Organization (WHO, 1990). These relatively low THg concentrations can be explained by watershed characteristics, which lead to short Hg residence time in the water column, and also by the short trophic chain that is characteristic of mountain lakes. Growth rate did not seem to influence THg concentrations in fish muscles of these lakes and we observed no relationship between fish Hg concentrations and altitude. This study shows that in the French Alps, high altitude lakes have relatively low THg and MeHg concentrations in both the water column and in Arctic charr populations. Therefore, Hg does not appear to present a danger for local populations and the fishermen of these lakes.  相似文献   

10.
Methylmercury (MeHg) and total mercury (THg) inputs to the Mississippi River from a large metropolitan wastewater treatment plant were measured to characterize the relative contribution of the treatment plant to in-stream loads of these contaminants. Concentrations of MeHg and THg were determined in filtered and unfiltered whole water samples collected weekly from the treatment plant effluent stream and from the river upstream of the plant discharge. Unfiltered MeHg concentrations in the plant effluent ranged from 0.034 to 0.062 ng L(-1) and were always less than those in the river (range: 0.083-0.227 ng L(-1)). The MeHg loading to the river from the treatment plant ranged from 0.026 to 0.051 g d(-1) and averaged 0.037 g d(-1) over the 13-week sampling period. The in-stream MeHg load in the river upstream varied widely depending on hydrologic conditions, ranging from 0.91 to 18.8 g d(-1) and averaging 4.79 g d(-1). The treatment plant discharge represented 1.6%, on average, of the in-stream MeHg load, ranging from 0.2 to 3.5% depending on flow conditions in the river. MeHg in treatment plant effluent was primarily in the filtered phase (mean: 57%, <0.2 microm), but in the river the filtered/unfiltered ratio (F/UF) was typically less than 30% except during a major precipitation runoff event, when F/UF increased to 78%. The MeHg/THg ratio in unfiltered treatment plant effluent varied little (range: 1.6-1.9%), suggesting that THg concentration can serve as a relatively accurate proxy for MeHg concentration in this effluent stream. Supplemental sampling of the treatment plant influent stream showed that removals of MeHg and THg across the treatment process averaged 97% and 99%, respectively. These results show the treatment plant to be effective in removing MeHg and THg from wastewater and in minimizing its impact on Hg levels in the receiving water.  相似文献   

11.
This study investigated the environmental impact and level of risk associated with mercury (Hg) contamination near a derelict chlor-alkali plant in Pavlodar, Northern Kazakhstan. Several species of fish were sampled from the highly polluted Lake Balkyldak and the nearby river Irtysh, to assess the extent of Hg bioaccumulation in the aquatic food chain and potential human health risks. A small number of bovine tissue samples, water samples, soil and plant samples from a nearby village were also investigated in order to make a preliminary assessment of potential impacts on the terrestrial food chain. Mercury levels in fish caught from Lake Balkyldak ranged from 0.16 to 2.2 mg kg(-1) and the majority of fish exceeded current human health criteria for Hg. Interspecies comparisons indicated that Hg is accumulated in the order dace>carp>tench. Site-specific bioaccumulation factors (BAF) were calculated for THg, and were estimated for MeHg. Fish from the river Irtysh and floodplain oxbow lakes contained between 0.075 and 0.159 mg kg(-1) of Hg and can be regarded as uncontaminated. Soils were found to be impacted by past atmospheric emissions of Hg. Cattle grazing in the surroundings of the factory are exposed to Hg from contaminated soils, plants and surface water, but the consumption of contaminated fish from the lake appears to be the main route of exposure for humans.  相似文献   

12.
Concerns over the fate and bioaccumulation of mercury (Hg) inputs to Onondaga Lake, a hypereutrophic lake in central New York, prompted an investigation into the concentrations and fluxes of Hg discharge from the Onondaga County Metropolitan Wastewater Treatment Plant (METRO WWTP). Discharge of methyl Hg (MeHg) is of concern because it is the form of Hg that readily bioaccumulates along the aquatic food chain. This study incorporated clean protocols for sampling and Hg analysis to evaluate: seasonal patterns in the concentrations of total Hg (THg) and MeHg in the WWTP unit processes; the production of MeHg within the unit processes of the WWTP; the overall fate of THg and MeHg within the WWTP; and the relative impact of the Hg discharged from the WWTP to Onondaga Lake. Concentrations of THg (range: 80-860 ng/L) and MeHg (0.7-17 ng/L) in raw sewage were highly variable, with higher concentrations observed in the summer months. The dynamics of THg though the WWTP were correlated with total suspended solids (TSS). As a result, the majority of the THg removal (55%) occurred during primary treatment. Overall, about 92% of the THg entering the plant was removed as sludge, with volatilization likely a minor component of the overall Hg budget. The transformation of MeHg through the plant differed from THg in that MeHg was not correlated with TSS, and displayed strong seasonal differences between winter (November to April) and summer (May-October) months. During the summer months, substantial net methylation occurred in the activated sludge secondary treatment, resulting in higher MeHg concentrations in secondary effluent. Net demethylation was the dominant mechanism during tertiary treatment, resulting in removal of substantial MeHg from the secondary effluent. The overall MeHg removal efficiency through the plant was about 70% with more efficient removal during summer months. Sediment trap collections made below the epilimnion of Onondaga Lake indicated average deposition rates of 12 μg/m2-day for THg and 0.33 μg/m2-day for MeHg. These deposition rates are more than an order of magnitude higher than the thermocline area normalized external loads from METRO effluent (0.85 μg/m2-day for THg, 0.05 μg/m2-day for MeHg). Our findings indicate that the impact of the discharge from METRO is relatively small, contributing about 10-15% of Hg to the total gross Hg input to the hypolimnion of the lake.  相似文献   

13.
We examined methylmercury (MeHg) bioavailability in four of the most predominant wetland habitats in California's Central Valley agricultural region during the spring and summer: white rice, wild rice, permanent wetlands, and shallowly-flooded fallow fields. We sampled MeHg and total mercury (THg) concentrations in two aquatic macroinvertebrate taxa at the inlets, centers, and outlets of four replicated wetland habitats (8 wetlands total) during two time periods bounding the rice growing season and corresponding to flood-up and pre-harvest (96 total samples). In general, THg concentrations (mean ± standard error) in Notonectidae (Notonecta, back swimmers; 1.18 ± 0.08 µg g− 1 dry weight [dw]) were higher than in Corixidae (Corisella, water boatmen; 0.89 ± 0.06 µg g 1 dw, MeHg: 0.74 ± 0.05 µg g 1 dw). MeHg concentrations were correlated with THg concentrations in Corixidae (R2 = 0.80) and 88% of THg was in the MeHg form. Wetland habitat type had an important influence on THg concentrations in aquatic invertebrates, but this effect depended on the sampling time period and taxa. In particular, THg concentrations in Notonectidae, but not Corixidae, were higher in permanent wetlands than in white rice, wild rice, or shallowly-flooded fallow fields. THg concentrations in Notonectidae were higher at the end of the rice growing season than near the time of flood-up, whereas THg concentrations in Corixidae did not differ between time periods. The effect of wetland habitat type was more prevalent near the end of the rice growing season, when Notonectidae THg concentrations were highest in permanent wetlands. Additionally, invertebrate THg concentrations were higher at water outlets than at inlets of wetlands. Our results indicate that although invertebrate THg concentrations increased from the time of flood-up to draw-down of wetlands, temporarily flooded habitats such as white rice, wild rice, and shallowly-flooded fallow fields did not have higher THg or MeHg concentrations in invertebrates than permanent wetlands.  相似文献   

14.
The concentrations of total mercury (THg) and methylmercury (MeHg) in the sediments of Lake Shihwa, an artificial salt lake in Korea located near two large industrial complexes, were determined to investigate the state of Hg contamination in the lake sediments and the effect of local Hg source. THg and MeHg concentrations in the sediments, monitored for 2 years, ranged from 0.02 to 0.28 µg g− 1 and ≤ 0.026 to 0.67 ng g− 1, respectively. The overall distribution of Hg in lake sediments showed higher values near industrial complexes and in the central part of the lake. However, the correlations between Hg and environmental factors, such as organic material (OM) content, and acid volatile sulfide (AVS), were weak and did not clearly explain the variation in Hg distribution. The spatial distribution of sediment Hg and monthly precipitation data during the sampling period showed that the amount of runoff following rain events and water gate operation may be additional important factors regulating Hg level and distribution in lake sediments. The levels of THg in fish species in this lake ranged from 9.8 to 35 ng g− 1, suggesting that the bioavailability of sediment Hg in the lake may be low. Although the THg concentrations in Lake Shihwa sediment were lower than those in other foreign study sites, they were higher than in neighboring coastal regions, and are constantly increasing. This result indicates that the nearby industrial complexes may be the major source of Hg found in the sediments of Lake Shihwa.  相似文献   

15.
The distribution, sources and fate of mercury (Hg) in the water column of the Gulf of Trieste (northern Adriatic Sea), affected by the Hg polluted river Soca/Isonzo for centuries draining the cinnabar-rich deposits of the Idrija mining district (NW Slovenia), were studied in terms of total and dissolved Hg, reactive Hg, total and dissolved methylmercury (MeHg), mesozooplankton Hg and MeHg, and sedimentation rates of particulate Hg. Higher total Hg concentrations in the surface layer were restricted to the area of the Gulf in front of the river plume expanding in a westerly direction. Higher concentrations in bottom water layers were the consequence of sediment resuspension. Dissolved Hg exhibited higher concentrations in the surface layer in the area in front of the river plume. Higher bottom concentrations of dissolved Hg observed at some stations were probably due to remobilization from sediments, including resuspension and benthic recycling. The relationship between dissolved Hg in the surface layer and salinity showed nonconservative mixing in June 1995 during higher riverine inflow and nearly conservative mixing in September 1995 during lower riverine inflow. Both mixing curves confirm the river Soca/Isonzo to be the most important source of total and dissolved Hg, which are significantly correlated, in the Gulf. Reactive Hg is significantly correlated with dissolved Hg, indicating that the majority of dissolved Hg is reactive and potentially involved in biogeochemical transformations. The higher total MeHg in the bottom layer is the result of remobilization of MeHg from sediments including benthic fluxes. Strong seasonal variation of sedimentation rates of particulate Hg was found during a 2-year study in the central part of the Gulf. These variations followed those of total sedimented matter, indicating that sedimented Hg is mostly associated with inorganic matter. About a 2.5-fold higher fluxes of particulate Hg were observed at the depth of 20 m relative to 10 m which is attributed to bottom sediment resuspension. Temporal variability of mesozooplankton Hg and MeHg is the consequence of biomass and species variations, and grazing behaviour. From the preliminary Hg mass balance it appears that the Gulf is an efficient trap for total Hg and a net source of MeHg.  相似文献   

16.
Previous studies at the Svartberget catchment in northern Sweden have identified potential terrestrial sources of methylmercury (MeHg) and total mercury (THg) in runoff as well as processes controlling MeHg/Hg transfers from soil to runoff water. This paper considers whether the concepts based on a few seasons of observations are consistent with catchment budgets of MeHg/THg over half a decade. Inter-annual and seasonal variations in the input and output fluxes of THg/MeHg, in open field wet deposition (OF), litterfall (LF) and runoff water are evaluated together with more recently measured concentrations that include the throughfall water (TF) data. The input and output flux data of THg and MeHg from the Svartberget catchment are also compared to those from the G?rdsj?n Catchment. The average annual MeHg input fluxes in OF, TF and LF are 0.08, 0.17 and 0.3 g km(-2) year(-1), respectively. The comparable inputs for THg are 7, 15 and 17 g km(-2) year(-1). Thus, LF is as important as TF for THg inputs, while LF is twice as important as TF for MeHg inputs. The annual output flux of MeHg varied between 0.05 and 0.14 g km(-2) year(-1). The annual output flux of THg varied between 1 and 3.4 g km(-2) year(-1). The large inter-annual variations in catchment output did not follow the smaller variations in atmospheric input. This suggests that changes in climate can effect terrestrial outputs of THg/MeHg to surface water more than atmospheric deposition. These data do not contradict the earlier findings that it is the hydrological and biogeochemical processes in the riparian zone that have a central role in determining the amount of MeHg reaching surface waters from forested catchments. The juxtaposition of major flow paths and organic-rich soils in the riparian zone may create the locations of most importance for net MeHg production, runoff export and a larger pool of MeHg.  相似文献   

17.
Production of methyl mercury (MeHg) is elevated in new hydroelectric reservoirs because organic carbon stimulates methylation of inorganic mercury (Hg) stored in the terrestrial system. This can cause adverse health in fish and in organisms that eat fish. We expected that burning vegetation before flooding would decrease the amount of Hg and organic carbon and thereby lower MeHg production. We conducted a replicated field experiment to investigate the effects of burning vegetation and soil before flooding on MeHg production and bioaccumulation. Vegetation and soil were added to mesocosms in the following combinations: unburned vegetation and unburned soil (Fresh treatments), burned vegetation and unburned soil (Partial Burn treatments), and burned vegetation and burned soil (Complete Burn treatments). Controls had no added vegetation or soil. During combustion with propane torches, a large percentage of the total Hg (THg) and MeHg was lost from vegetation and soil. THg and MeHg concentrations were highest in the surface water of Fresh treatments, lower in Partial Burn treatments and lowest in Complete Burn treatments and controls. Differences in concentrations of MeHg in biota were consistent among treatments, but did not follow aqueous concentrations. On the final sample date, MeHg concentrations in biota of Controls and Partial Burn treatments were greater than in Complete Burn and Fresh treatments. The lack of relationship between MeHg in biota and MeHg in water may have been due to modification of the bioavailability of MeHg by dissolved organic matter as the ratios of MeHg in biota to water were inversely correlated with concentrations of dissolved organic carbon. Although burning before flooding decreased MeHg concentrations in the water, it did not lower MeHg accumulation in the lower food web.  相似文献   

18.
Many natural watersheds are increasingly affected by changes in land use associated with suburban sprawl and such alterations may influence concentrations, partitioning, and fluxes of toxic trace metals in fluvial ecosystems. We investigated the cycling of mercury (Hg), monomethylmercury, cadmium, copper, lead, nickel, and zinc in three watersheds at the urban fringe of Dayton, Ohio, over a 13-month period. Metal concentrations were related positively to discharge in each stream, with each metal having a high affinity for suspended particles and Hg also having a noticeable association with dissolved organic carbon. Although not observed for the other metals, levels of Hg in river water varied seasonally and among streams. Yields of Hg from two of the catchments were comparable to that predicted for runoff of atmospherically deposited Hg (∼25% of wet atmospheric flux), whereas the third watershed had a significantly greater annual flux associated with greater particle-specific and filtered water Hg concentrations, presumably from a point source. Fluxes of metals other than Hg were similar among each watershed and suggestive of a ubiquitous source, which could be either atmospheric deposition or weathering. Results of this study indicate that, with the exception of Hg being increased in one watershed, processes affecting metal partitioning and loadings are similar among southwest Ohio streams and comparable to other North American rivers that are equally or less impacted by urban development. Relative differences in land use, catchment area, and presence or absence of waste water treatment facilities had little or no detectable effect on most trace metal concentrations and fluxes. This suggests that suburban encroachment on agricultural and undeveloped lands has either similarly or not substantially impacted trace metal cycling in streams at the urban fringe of Dayton and, by extension, other comparable metropolitan areas.  相似文献   

19.
The St. Lawrence River near Cornwall, Ontario was designated an Area of Concern by the International Joint Commission in 1985. Sediments from this area have historically been contaminated with mercury (Hg), and although concentrations have decreased since the 1970s, they still remain high. Nine sediment cores were collected from three sites within the Area of Concern in 2004/05 to determine the variability in historical profiles of Hg deposition to the river. Sediment and pore water phases were analyzed for total mercury (THg) and methyl mercury (MeHg) and cores were analyzed for 210Pb to determine chronologies of sedimentation at these sites. Mercury diffusion rates in pore waters within the sediment column were determined to be very low (between 0 and 2.15 ng cm− 2 year− 1, n = 3) compared to the recent Hg sedimentation rates at these sites (183 ± 30 ng cm− 2 year− 1 SE, n = 9) determined by multiplying surface Hg concentrations with 210Pb-derived sedimentation rates. These results indicate that Hg profiles in these cores accurately depict historical releases of Hg to the river bed. The influence of federal regulations in the early 1970s to restrict Hg emissions to the river was apparent in these dated sediment cores, as were the closures of several local industries in the mid 1990s. Mercury accumulation rates prior to 1970 were 60 times higher than those occurring after 1995. Methyl mercury showed surface enrichment in most of these sediment cores providing evidence that mercury methylation occurred most rapidly near the sediment surface.  相似文献   

20.
The Kastela Bay is heavily polluted with inorganic mercury originated from direct discharges from the chlor-alkali plant, which operated in the period from 1950 to 1990. Even though the plant was closed 15 years ago, elevated levels of total mercury are still evident in surface sediments of the bay. In order to assess the availability of remobilized mercury to marine organisms, cultured mussels (M. galloprovincialis) were transplanted from pristine area to Kastela Bay, in the period from September 2000 to March 2001. Mussel samples were collected for the analysis of THg and MeHg in whole soft tissue, gills and digestive gland. Surface sediments and suspended matter were collected for the analysis of THg. Digestive gland was the target organ for the accumulation of THg, while concentrations of MeHg were similar in all analyzed tissues. The percentage of MeHg in mussel tissues (4-27%) was characteristic for the areas contaminated with inorganic mercury. A significant negative correlation was observed between the THg concentration in the tissues and the percentage of MeHg. Concentrations of THg in mussel tissues, which were decreasing from the source of contamination in an anticlockwise direction towards the exit of the bay, were significantly positively correlated to THg content in sediment and suspended particles. Spatial distribution of mercury species (THg and MeHg) in different environmental compartments was in accordance with the prevailing circulation in the bay. Data obtained through 6 months of biomonitoring experiment indicated that digestive gland was more sensitive indicator of THg concentrations in the environment than the whole organism or gills. As for MeHg, all tissues were equally suitable as biomonitors of MeHg concentrations in the environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号