首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
研究了正己烷在不同分隔筛上的裂化反应,用裂化反应链机理的观点统一了正己烷裂化反应中的单、双分子两种反应机理,进一步明确了某些基元反应步骤的发生过程,较好地解释了正己烷裂化反应的产物分布以及产物选择性和分子筛孔径的关系。基于裂化反应链机理,提出了“裂化反应链长(CCL)”的概念,并将裂化反应链长与分隔筛的孔结构进行了关联。结果表明,在孔径较大的Y,β等分子筛上,正己烷裂化反应有着较大的CCL值,这意  相似文献   

2.
研究了正己烷在不同硅铝比的 Y,β两个系列分子筛上的裂化反应过程。通过对某些典型产物的初始生成速率和分子筛酸密度关系的考察 ,发现两者之间存在着良好的线性相关性。同时 ,对正己烷裂化反应链长和分子筛酸密度关系的考察表明 ,与分子筛的孔结构相比 ,酸密度对正己烷裂化反应链长基本上没有影响 ,也就是说酸密度的变化并不改变单、双分子反应的发生比例 ;双分子反应和单分子反应都是在单个酸位上完成的。基于以上事实 ,认为正己烷裂化反应中的双分子氢转移反应遵循 Rideal机理。  相似文献   

3.
研究了正己烷在不同硅铝比的Y,β两个系列分子筛上的裂化反应过程。通过对某些典型产物的初始生成速率和分子筛酸密度关系的考察,发现两者之间存在着良好的线性相关性。同时,对正己烷裂化反应链长和分子筛酸密度关系的考察表明,与分子筛的孔结构相比,酸密度对正己烷裂化反应链长基本上没有影响,也就是说酸密度的变化并不改变单、双分子反应的发生比例;双分子反应和单分子反应都是在单个酸位上完成的。基于以上事实,认为正己  相似文献   

4.
利用脉冲反应和IR技术,在500℃下,考察甲醇和正己烷在HY,BETA,HZSM-5,HZSM-35等4种不同结构分子筛催化剂上的耦合反应,并与正己烷单独裂化的初始反应活性和产品分布进行了分析和对比,由此分析了分子筛孔道结构和酸性质对耦合反应的影响.实验结果表明,在耦合反应中,甲醇的加入改变了烷烃的活化方式,使烷烃的单分子引发几率减小,而双分子H-转移引发占主要地位.这种裂化途径的改变,最终形成了双分子机理的典型产品分布.  相似文献   

5.
采用小型固定床实验装置考察了正己烷在4种分子筛上的催化裂解反应性能。结果表明:孔结构对正己烷催化裂解产物分布和积炭失活有着显著的影响;在所考察的4种分子筛中,孔径越小,越有利于单分子裂解,越不利于氢转移反应,乙烯和丙烯的选择性越高;ZSM-35上乙烯和丙烯的初始选择性虽然最高,但其积炭失活较严重,而ZSM-5分子筛表现出了较好的低碳烯烃选择性和抗积炭性,其双烯选择性为45.06%,且反应4h后转化率仅下降4%左右。  相似文献   

6.
正己烷在FAU和MFI型分子筛催化剂上的转化途径   总被引:1,自引:0,他引:1  
 以正己烷在分子筛催化剂上的转化途径和各转化产物平均摩尔选择性为基础, 建立了正己烷在分子筛催化剂上转化反应的独立反应方程, 通过关联独立反应议程和转化产物平均摩尔选择性计算出独立反应的摩尔选择性. 结果表明, 一旦正己烷的C-C键或C-H键被质子所戟生成Carbonium ion后, 该C6 Carbonium ion 随后发生的α异裂的位置更货币于在靠近链中的位置. 正己烷在MFI型, 复合FAU型和FAU型分子筛催化剂上的转化反应中, 单分子反应的比例分别为75.87%, 32.01%和31.46%. 正己烷反应产物中的丙烷和丙烯等较大分子的来源不仅是双分子反应, 同时还有单分子反应, 两者的比例受分子筛催化剂类型的影响. 以正己烷和H质子进行验证表明独立反应方程的建立和独立反应摩尔选择性的计算是有效的.  相似文献   

7.
MIP技术反应过程中裂化反应链引发的机理研究   总被引:1,自引:0,他引:1  
采用小型固定流化床装置模拟MIP技术反应条件,研究了催化循环链引发的原因。研究结果表明,MIP技术反应过程中,催化循环链的引发主要是原料中烷烃质子化,产生五配位正碳离子,使链反应遵循单分子的质子化裂化反应机理。热裂化反应在催化裂化反应体系中是不可避免的,热裂化反应产生的烯烃对链的引发也有贡献。烯烃即使是微量,质子化后产生三配位正碳离子,使反应按双分子反应机理进行。链引发阶段单分子反应与双分子反应选择性的比率为4.2:0.9。  相似文献   

8.
针对催化裂化油浆中存在较多可裂化而未裂化的饱和烃这一问题,以正十二烷、丁基环己烷、四氢萘、十氢萘等为模型化合物,采用催化裂化实验与分子模拟相结合的方法,对催化裂化过程中链烷烃未充分裂化的原因进行了分析。在链烷烃单独催化裂化反应以及与其它结构烃分子进行混合催化裂化的过程中,链烷烃表现出不同的裂化活性,当链烷烃与强供氢性分子(四氢萘或十氢萘)混合时,链烷烃的裂化受到了明显抑制。在此基础上,结合分子模拟理论计算结果,提出了分子间负氢离子转移是导致催化裂化过程中链烷烃未充分裂化的主要原因之一。  相似文献   

9.
直链烯烃在裂化催化剂基质上的反应机理研究   总被引:2,自引:0,他引:2  
用溶胶-凝胶法制备了一系列FCC催化剂的基质材料SiO2Al2O3,采用XRD、BET及IR对其结构和酸性特征进行了表征。在FCC操作条件下,以n-C7=-1为模型化合物,考察了反应产物分布与基质材料酸中心特性的关联,提出了n-C7=-1的裂化反应网络,对n-C7=-1的异构化、氢转移、芳构化等二次反应机理进行了探讨。结果表明:异构化反应过程同时以单分子和双分子两种机理进行,但双分子反应选择性较低;氢转移反应不仅与基质的酸中心密度有关,对酸类型的影响更为敏感,在只有L酸的基质上,氢转移以Rideal机理进行,其活性随酸中心密度呈线性增加;在既有B酸又有L酸的基质上,氢转移更倾向于L-H机理,其活性随酸中心密度呈指数增加;烯烃二次反应之间选择性的竞争很大程度上取决于B酸与L酸在总酸量中的分配;以烯烃在B酸与L酸上形成结构不同的正碳离子为前提,提出了两种正碳离子进一步反应的机理模型,并较好地解释了烯烃的反应机理与产物分布。  相似文献   

10.
以正十二烷为模型化合物,以Y型分子筛为催化剂,考察分子筛硅铝比、La含量和P含量对氢转移反应性能的影响,研究催化裂化反应机理及氢转移反应性能。结果表明,分子筛硅铝比的变化引起了分子筛表面酸量、酸密度和酸强度的变化,因而硅铝比的增加会降低分子筛的氢转移能力;随着La含量的增加,分子筛表面的酸量和酸密度也随之增加,有利于氢转移反应的进行;酸量和酸密度也随P含量的变化而变化,弱酸位的增加和强酸位的减少会减弱裂化反应,提高氢转移反应的选择性。质子化裂化机理可以更好地解释烷烃催化裂化反应的引发步骤,将氢转移指数定义为液相产物中烷烃与烯烃的摩尔比,可以很好地表征催化剂的氢转移活性。  相似文献   

11.
采用脉冲微反装置,在反应温度为550~650℃,低转化率(小于15%)下,采用石英砂和ZRP分子筛研究了3-甲基庚烷的热裂化和催化裂化反应,分析了甲烷的生成机理。结果表明,3-甲基庚烷热裂化主要产物是乙烯、丙烯和丁烯;在链传递阶段,甲基自由基夺氢生成甲烷的链循环反应路径有7条;与叔碳原子相连的C—H键和C—C键具有较高的反应活性,对甲烷选择性的贡献超过80%。3-甲基庚烷在ZRP分子筛催化下主要发生质子化裂化反应,C1~C4烷烃收率相对较高,甲烷由质子化裂化反应生成。对比热裂化与质子化裂化反应对甲烷的贡献可知,当反应温度低于600℃时,甲烷主要由质子化裂化反应生成;当反应温度高于650℃时,甲烷主要由热裂化反应生成。  相似文献   

12.
在脉冲微反色谱装置上,用正己烷、3-甲基戊烷、十氢化萘及环己烷为原料,考察了HZSM-5分子筛及催化剂的择形裂化性能及氢转移反应性能。结果表明,新鲜HZSM-5分子筛具有良好的择形性,高温水热处理后,择形性下降。氢转移反应能力降低。提高反应温度不利于择形裂化反应及氢转移反应。氢转移反应越低,丙烯及丁烯等烯烃选择性越高。芳烃不仅通过分子间氢转移反应生成,而且通过直接脱氢芳构化反应生成。根据实验结果,提出了烃类在HZSM-5分子筛上的择形催化裂化模型及环己烷在HZSM-5催化剂上的反应网络。  相似文献   

13.
以Y型分子筛为催化剂,在脉冲微反装置上进行正庚基苯催化裂化实验,考察了4种供氢剂对正庚基苯催化裂化反应的影响。实验结果表明,供氢剂可提高正庚基苯裂化反应的转化率,改变正庚基苯裂化反应产物的组成;供氢剂降低了反应产物中苯的含量,提高了烷基苯的含量;供氢剂降低了反应产物中的烯烃总含量,但对丙烯含量影响不大;供氢剂抑制了正庚基苯的二次裂化反应,降低了反应产物中小分子烷烃的含量,提高了大分子烷烃的支链化程度。供氢剂可以促进按Rideal机理进行的氢转移反应,不同类型供氢剂对氢转移反应影响程度有所不同;供氢剂有利于正庚基苯发生双分子裂化反应,并抑制了正庚基苯的单分子裂化。  相似文献   

14.
含噻吩烷烃在分子筛上裂化脱硫的研究   总被引:38,自引:3,他引:35  
考察了反应条件、不同烷烃和不同分子筛对含噻吩烷烃裂化脱硫反应的影响。结果表明,较代的反应温度和空速、较高的剂油比有利于裂化脱硫反应;几种分子筛的裂化脱硫活性按下旬次序递科研HY,HbetaHZSM-5;噻吩的裂化与烷烃持类型及其裂化能力密切相关。在与烷烃共存的条件下,噻粉在只好了筛上的裂化脱硫主要是通过噻吩与B酸中心及及烷烃间的氢转移反应的,所以有利于氢转移反应的条件也有利于含噻吩烷烃的裂化脱硫的  相似文献   

15.
考察了链烷烃单独裂化以及与其他烃类混合裂化时的转化率以及典型产物的分布,结果表明,链烷烃单独裂化时比较容易裂化,与其他烃类混合裂化时,其转化受到了明显抑制。分析认为,氢转移反应对原料烃类尤其是链烷烃的转化有明显的影响,链烷烃与强供氢体环烷芳烃混合催化裂化时发生第1类氢转移反应,链烷烃的转化受到抑制;链烷烃与小分子烯烃混合催化裂化时发生第2类氢转移反应,链烷烃的转化受到促进。因此,为了促进链烷烃的催化转化,需要抑制第1类氢转移反应,而促进第2类氢转移反应。  相似文献   

16.
在923~1 023K范围内,考察了正己烷热裂解反应,对各自由基上发生的竞争反应的选择性进行了定量分析,并讨论了反应温度对基元反应选择性的影响。实验结果表明,正己烷热裂解为链式反应机理,链反应由原料分子热均裂而引发,产生自由基;链反应通过自由基自身β-裂解和从反应物分子提取H反应而传播,同时生成烯烃和部分烷烃(包括氢气);链反应被双自由基重合反应而终止,同时生成另一部分烷烃产物。不同的自由基参与不同的基元反应,并具有不同反应途径或然率。升高反应温度有利于反应物分子的热均裂反应,促进自由基β-裂解反应,抑制自由基提取H反应,并提高焦炭和氢气收率。随反应温度从923K升至1 023K,动力学链长从7.33减小为5.73。  相似文献   

17.
采用脉冲微反装置,在反应温度为550~650 ℃、低转化率(小于 15%)条件下,研究了2,5-二甲基己烷在石英砂和ZRP分子筛上的热裂化和催化裂化反应,分析了甲烷的生成机理。结果表明:2,5-二甲基己烷热裂化反应的主要产物是甲烷、丙烯和异丁烯,在链传递阶段,甲基自由基夺氢可由3条反应路径生成甲烷,叔C-H键对甲烷选择性的贡献大于90%;ZRP分子筛的择形催化作用影响2,5-二甲基己烷催化裂化的转化率和产物分布,甲烷由质子化裂化反应生成;分析热裂化反应与质子化裂化反应对甲烷生成的影响可知,甲烷主要由热裂化反应生成,且随反应温度升高,热裂化反应对甲烷生成的贡献逐渐增大。  相似文献   

18.
低碳烷烃在改性ZSM—5分子筛子的氧化脱氢裂化反应研究   总被引:1,自引:0,他引:1  
低碳烷烃裂化比石油馏分困难得多。在氧化脱氢反应条件下C-C键强度减弱,氢转移反应减少,所以烃分子裂化速率回忆,烯烃选择性提高。将催化裂化和氧化脱氢结合,提出了氧化脱氢裂化新方法。在K、Ba、Mg改性的HZSM-5沸石上,正已烷和正戊烷氧化脱氢裂化产物的烯烃选择性明显提高。  相似文献   

19.
MIP工艺反应过程中裂化反应的可控性   总被引:10,自引:2,他引:8  
从催化裂化反应机理出发,对多产异构烷烃的催化裂化工艺的两个反应区进行分析,提出了裂化反应可控性的概念,并利用氢转移反应终止裂化反应的特性来实现裂化反应可控性,从而拓展了两个反应区的功能,由此,形成了多产异构烷烃催化裂化(MIP)工艺的生产方案多样性。通过设计工艺条件和选用适当的催化剂进行了中型试验。试验结果表明,多产异构烷烃的催化裂化工艺的产物分布存在3种类型,即多产轻质油、多产汽油或多产汽油和液化气,从而实现了裂化反应可控性。  相似文献   

20.
采用小型固定流化床实验装置,考察了活性组分分别为USY,Beta,ZRP分子筛的3种催化剂对重质费-托合成油裂化反应性能的影响,重点研究了不同分子筛催化剂对汽油产率及性质的影响。结果表明:USY催化剂作用下的汽油产率最高,汽油中异构烷烃质量分数高达39.87%;Beta和ZRP催化剂作用下的液化气产率分别高达52.44%和50.92%,且液化气中丙烯的浓度高。不同分子筛催化剂对重质费-托合成油催化裂化性能的差别在于其反应机理不同,重质费-托合成油在ZRP催化剂中主要发生单分子反应,而在USY催化剂中双分子反应很活跃;Beta催化剂中主要发生单分子反应,其双分子反应活性高于ZRP分子筛,但低于USY分子筛。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号