首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于共源级联放大器的小信号模型,详细分析了宽带放大器的输入阻抗特性和噪声特性。利用MOS晶体管的寄生容性反馈机理,采用TSMC公司标准0.18μmCMOS工艺设计实现了单片集成宽带低噪声放大器,芯片尺寸为0.6mm×1.5mm。测试结果表明,在3.1~5.2GHz频段内,S11<-15dB,S21>12dB,S22<-12dB,噪声系数NF<3.1dB。电源电压为1.8V,功耗为14mW。  相似文献   

2.
王春华  万求真 《半导体学报》2011,32(8):085002-6
本文基于特许0.18μm CMOS工艺,提出了一种新型的低复杂3.1~10.6GHz超宽带LNA电路,它由两级简单的放大器通过级间电感连接构成。第一级放大器使用电阻电流复用结构和双电感退化技术来达到宽带输入匹配和低噪声性能,第二级放大器使用带电感峰值技术的共源级放大器来同时达到高平坦增益和好的宽带性能。测试结果表明,在3.1~10.6GHz频段内,提出的超宽带LNA的最大功率增益为15.6dB,S12为-45dB,输入输出隔离度小于-10dB,噪声系数NF为2.8~4.7dB,在6GHz时的输入三阶交调点IIP3为-7.1dBm。芯片在1.5V电源电压下,消耗的功率为14.1mW,芯片总面积为0.8mm0.9mm。  相似文献   

3.
0.35μm SiGe BiCMOS 3.1~10.6GHz超宽带低噪声放大器   总被引:1,自引:0,他引:1  
基于AMS 0.35 μm SiGe BiCMOS工艺,设计了一种应用于3.1~10.6 GHz频段的超宽带低噪声放大器;采用多个反馈环路,实现超宽带范围内的阻抗匹配以及低噪声性能;详细分析了匹配电路的特性.在片测试结果表明,在工作频带内,电路增益S21达到14 dB,增益波动小于2 dB;输入回波损耗S11小于-10 dB;噪声系数NF小于3.5 dB.电路采用3 V供电,功耗为30 mW.  相似文献   

4.
汪小军  黄风义  田昱  唐旭升  王勇   《电子器件》2009,32(3):579-582
提出了一个采用TSMC 0.18μmCMOS工艺设计的,工作频段为3.1~5.2 GHz的超宽带低噪声放大器.放大器采用了前置带通滤波器的并联负反馈共源共栅结构,并从宽带电路.高频电路器件选择等方面讨论了超宽带低噪声放大器的设计,结果表明,在整个工作频段,电路输入输出匹配S11S22均小于-14 dB,最高增益为15.92 dB,增益波动为1.13 dB,电路工作电压为1.8 V,功耗为27 mW,噪声系数NF为1.84~2.11 dB.  相似文献   

5.
基于分布式放大器理论,设计了一款基于GaAs赝配高电子迁移率晶体管(PHEMT)工艺的2~20GHz宽带单片集成双向放大器。该款放大器将两个独立放大器与开关控制电路集成,通过开关控制放大器的正反向导通,实现双向放大器接收和发射状态的切换。其中放大器采用的是宽带分布式低噪声放大器,开关控制电路的控制电平为0V和-5V。测试结果表明,该款放大器在+5V工作电压下,工作电流为60mA,在2~20GHz的宽带频率内实现小信号增益大于14dB,1dB压缩点输出功率大于11dBm,噪声系数小于5.5dB。双向放大器的芯片尺寸为3.1mm×2.1mm。  相似文献   

6.
基于ADS仿真的宽带低噪声放大器设计   总被引:1,自引:0,他引:1  
设计了一个S频段宽带低噪声放大器.该放大器采用两级E-PHEMT晶体管(ATF541M4)级联结构,单电源供电模式.应用微波仿真软件ADS对匹配电路进行了优化设计,最后通过S参数及谐波平衡仿真得到放大器的各项性能参数,在2.7~3.1 GHz频率范围内噪声系数小于0.6 dB,带内增益大于30 dB,带内平坦度小于±1 dB,输入输出驻波比小于1.6 dB,1 dB增益压缩点输入功率不小于-15 dBm.仿真结果表明,该设计完全满足性能指标要求.  相似文献   

7.
基于SiGe HBT的超宽带低噪声放大器的设计   总被引:1,自引:1,他引:0  
结合超宽带(UWB)无线通信标准,给出了超宽带低噪声放大器(LNA)的设计思路.依据这个思想,并以高性能硅锗异质结双极型晶体管为核心,设计了一款超宽带低噪声放大器.采用安捷伦的ADS,对设计的放大器进行了仿真验证.结果表明,该放大器在3.1~6 GHz带宽内,S21高于11 dB,且变化不超过3 dB;S11和S22都在-15 dB以下;S12低于-20 dB;放大器的噪声系数在1.3~1.7 dB之间,群延时在整个频带内变化在15 ps左右,且在整个频带内无条件稳定.放大器良好的性能证明了提出的设计思想的正确性.  相似文献   

8.
报道了具有高增益自偏结构的低噪声S波段MMIC宽带低噪声高增益放大器.该放大器是采用国际先进的0.25μm PHEMT工艺技术加工而成.电路设计采用了两级级联负反馈结构,并采用电阻自偏压技术,单电源供电,使用方便,可靠性高,一致性好.MMIC芯片测试指标如下:在1.9~4.2GHz频率范围内,输入输出驻波小于2.0,线性功率增益达30dB,带内增益平坦度为±0.7dB,噪声系数小于2.7dB.芯片尺寸:1mm×2mm×0.1mm.这是国内报道的增益最高,芯片面积最小的S波段放大器.  相似文献   

9.
采用OMMIC公司提供的0.2μm GaAs PHEMT工艺(fT=60 GHz)设计并实现了一种适用于宽带无线通信系统接收前端的低噪声放大器。在3.1~10.6 GHz的频带内测试结果如下:最高增益为13 dB;增益波动<2dB;输入回波损耗S11<-11 dB;输出回波损耗S22<-16 dB;噪声系数NF<3.9 dB。5 V电源供电,功耗为120mW。芯片面积为0.5 mm×0.9 mm。与近期公开发表的宽带低噪声放大器测试结果相比较,本电路结构具有芯片面积小、工作带宽大、噪声系数低的优点。  相似文献   

10.
闵丹  马晓华  刘果果  王语晨 《半导体技术》2019,44(8):590-594,622
为满足宽带系统中低噪声放大器(LNA)宽带的要求,采用0.15μm GaAs赝配高电子迁移率晶体管(PHEMT)工艺,设计了两款1 MHz^40 GHz的超宽带LNA,分别采用均匀分布式放大器结构及渐变分布式放大器结构,电路面积分别为1.8 mm×0.85 mm和1.8 mm×0.8 mm。电磁场仿真结果表明,1 MHz^40 GHz频率范围内,均匀分布式LNA增益为15.3 dB,增益平坦度为2 dB,噪声系数小于5.1 dB;渐变分布式LNA增益为14.16 dB,增益平坦度为1.74 dB,噪声系数小于3.9 dB。渐变分布式LNA较均匀分布式LNA,显著地改善了增益平坦度、噪声性能和群延时特性。  相似文献   

11.
超宽带CMOS低噪声放大器的设计   总被引:1,自引:0,他引:1  
罗志勇  李巍  任俊彦 《微电子学》2006,36(5):688-692
设计了一种应用于3.1~5.2 GHz频段超宽带系统接收机的差分低噪声放大器,采用前置切比雪夫(Chebyshev)2阶LC ladder带通滤波器的并联负反馈结构,详细分析了其输入宽带阻抗匹配特性和噪声特性。仿真基于TSMC 0.18μm RF CMOS工艺。结果表明,在全频段,电路功率增益S21为11 dB,增益平坦度小于1 dB,最小噪声系数为3.5 dB,输入输出均良好匹配,在1.8V电源电压下,功耗为14.4 mW。  相似文献   

12.
一种新型GPS前端CMOS低噪声放大器的设计   总被引:4,自引:0,他引:4       下载免费PDF全文
介绍了一种工作于GPS L1频带的新型低噪声放大器的设计方案.电路运用电流镜结构进行电流放大,并利用偏置电流复用技术减小功耗.该放大器工作在1.575 GHz时, 电源电压为1.5 V的情况下噪声系数为1.06 dB,电压增益为23 dB,1 dB压缩点为-17.36 dBm,S11<-10 dB,电流为4.6 mA.  相似文献   

13.
一种可编程宽带放大器的设计   总被引:1,自引:0,他引:1  
以AT89S51单片机和FPGA为控制核心,利用可编程增益放大器THS7001和可变增益放大器AD603,设计一种可编程精密宽带放大器.测试结果表明:该可编程宽带放大器的增益范围为-6~70 dB.通频带为40 Hz-15 MHz.低噪声,并具有自动增益控制功能,动态范围达60 dB.  相似文献   

14.
利用负反馈放大器设计原理,采用GaAs PHEMT工艺技术,设计制作了一种微波宽带GaAs PHEMT低噪声放大器芯片,并给出了详细测试曲线.该放大器由两级组成,采用负反馈结构,工作频率0.8~8.5 GHz,整个带内功率增益19 dB,噪声系数1.55 dB,增益平坦度小于±0.7 dB,输入驻波比1.6,输出驻波比1.8,1 dB压缩点输出功率大于10 dBm,芯片内部集成偏置电路,单电源 5 V供电,芯片具有良好的温度特性.该芯片面积为2.5 mm × 1.2 mm.  相似文献   

15.
介绍了一种宽带放大器芯片,该放大器的工作频率覆盖了2~12 GHz,采用砷化镓(GaAs)赝配高电子迁移率晶体管(PHEMT)单片电路工艺实现。在一个宽带负反馈放大器的前面集成了一个幅度均衡器,使放大器的增益在整个带内具有7 dB的正斜率,频率低端(2 GHz)增益为3 dB,高端(12 GHz)为10 dB,输入输出电压驻波比为1.6∶1,饱和输出功率为20 dBm,芯片尺寸为2.0 mm×1.5 mm×0.1 mm。详细描述了电路的设计流程,并对最终的测试结果进行了分析。该芯片具有频带宽、体积小、使用方便的特点,可作为增益块补偿微波系统中随着频率升高而产生的增益损失。  相似文献   

16.
一种小型平面超宽带天线的设计与实现   总被引:1,自引:0,他引:1  
提出了一种新颖的小型平面超宽带天线。该天线由矩形微带天线的基本结构演变而来,为获得超宽带频率特性,设计时辐射单元下端采用了渐变结构,金属底板使用缺陷地结构。对天线的反射系数、方向图及增益进行了仿真计算和优化设计,实测结果为:天线的工作频段为3.1~13.0 GHz(S11<-10 dB),增益大于1 dB,具有良好的超宽带特性和全向辐射特性。  相似文献   

17.
0.18μm CMOS 3.1-10.6GHz超宽带低噪声放大器设计   总被引:6,自引:0,他引:6  
介绍了一种基于0.18μm CMOS工艺、适用于超宽带无线通信系统接收前端的低噪声放大器.在3.1~10.6GHz的频带范围内对它仿真获得如下结果:最高增益12dB;增益波动小于2dB;输入端口反射系数S11小于-10dB;输出端口反射系数S22小于-15dB;噪声系数NF小于4.6dB.采用1.5V电源供电,功耗为10.5mW.与近期公开发表的超宽带低噪声放大器仿真结果相比较,本电路结构具有工作带宽大、功耗低、输入匹配电路简单的优点.  相似文献   

18.
从行波放大器设计理论出发,研制了一款基于低噪声GaAs赝配高电子迁移率晶体管(PHEMT)工艺设计的2~20 GHz单片微波集成电路(MMIC)宽带低噪声放大器。该款放大器由九级电路构成。为了进一步提高放大器的增益,采用了一个共源场效应管和一个共栅场效应管级联的拓扑结构,每级放大器采用自偏压技术实现单电源供电。测试结果表明,本款低噪声放大器在外加+5 V工作电压下,能够在2~20 GHz频率内实现小信号增益大于16 dB,增益平坦度小于±0.5 dB,输出P-1 dB大于14 dBm,噪声系数典型值为2.5 dB,输入和输出回波损耗均小于-15 dB,工作电流仅为63 mA,低噪声放大器芯片面积为3.1 mm×1.3 mm。  相似文献   

19.
杨楠  杨琦  刘鹏 《现代信息科技》2022,(8):45-47+52
基于GaAs增强型pHEMT工艺,设计了一款单电源供电、工作频率覆盖0.1 GHz~18 GHz单片集成宽带低噪声放大器芯片。在同一芯片上集成分布式低噪声放大器和有源偏置电路,通过有源偏置电路为分布式放大器提供栅压实现放大器单电源供电。在片测试结果表明,放大器在+5 V工作电压下,工作电流60 mA,在0.1 GHz~18 GHz工作频段范围内实现小信号增益18 dB,输出P1 dB(1 dB压缩点输出功率)典型值12 dBm,噪声系数典型值2.5 dB。放大器的芯片尺寸为2.4 mm×1.0 mm×0.07 mm。  相似文献   

20.
以一种经典的窄带低噪声放大器结构为基础,分析级联放大器的S参数,通过优化元件参数,获得了一种在3.6~4.7 GH z范围内具有低输入回波损耗、低噪声系数的放大器。采用标准的0.18μm RF CM O S工艺进行了设计和实现。芯片面积为0.6 mm×1.5 mm。测试结果表明:在3.6~4.7 GH z的范围内,该宽带低噪声放大器输入回波损耗小于-14 dB;噪声系数小于2.8 dB,增益大于10 dB。在1.8 V电源下功耗约为45 mW。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号