首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
八碳芳烃临氢异构化反应动力学模型   总被引:1,自引:1,他引:1  
针对某实际工业异构化装置,在已开发的八碳芳烃临氢异构化反应网络的基础上,将系统中的八碳环烷烃和八碳链烷烃作为一个集总组分,提出新的六组分异构化反应网络,由此建立了适用于工业生产的八碳芳烃临氢异构化反应动力学模型.考虑结焦对催化剂活性的影响,提出了一种经验形式的催化剂失活函数,能够合理地描述催化剂失活过程.采用四五阶Runge-Kutta法对模型方程进行数值求解,基于多套稳态平衡数据采用差分变尺度优化算法(BFGS)对动力学参数进行估计,进而在不同操作条件下对模型进行验证.结果表明估计值与工业标定值相当吻合,达到了工业应用的模拟精度要求.  相似文献   

2.
A kinetic model is derived from experimental data for the Fischer-Tropsch reaction on a precipitated iron catalyst. In this model, the effect of nonideality of the reaction medium on the reaction rate is taken into account by introducing fugacity coefficients derived from a modified Redlich-Kwong-Soave equation of state. Coefficients of the Schulz-Flory distribution for saturated and unsaturated hydrocarbon products were calculated as functions of CO and H2 fugacities in the reaction mixture. The proposed kinetic model is applicable atT= 523–623 K andP = 6–100 atm. A method based on the calculated critical parameters of the reaction mixture is proposed for the selection of suitable supercritical solvent and for the optimization of its concentration. The reaction rate and the total yield of CnH2n (n ≥ 2) olefins (including the desired fraction C5–C11) under supercritical conditions were demonstrated to be essentially higher than those for the reference process carried out in the absence of solvent.  相似文献   

3.
Based on the reported reaction networks, a novel six-component hydroisomerization reaction network with a new lumped species including C8-naphthenes and C8-paraffins is proposed and a kinetic model for a commercial unit is also developed. An empirical catalyst deactivation function is incorporated into the model accounting for the loss in activity because of coke formation on the catalyst surface during the long-term operation. The Runge-Kutta method is used to solve the ordinary differential equations of the model. The reaction kinetic parameters are benchmarked with several sets of balanced plant data and estimated by the differential variable metric optimization method (BFGS). The kinetic model is validated by an industrial unit with sets of plant data under different operating conditions and simulation results show a good agreement between the model predictions and the plant observations.  相似文献   

4.
The solubility of CO2 in solid-state PET was measured using a pressure-decay method. In order to calculate the solubility of CO2 in the amorphous region of PET, the crystallinity of solid state PET dissolved in CO2 at different pressures and temperatures was measured by differential scanning calorimetry (DSC). The solubility increases with increasing pressure and it follows a linear relationship and obeys Henry’s law when the pressure is below 8 MPa. The effect of temperature on solubility is weak and the solubilities at different temperatures are almost the same under low pressures. At higher pressure, the solubility decreases with an increase in temperature. The solubility of CO2 in the amorphous region of PET at 373.15 K, 398.15 K and 423.15 K was correlated with the Sanchez-Lacombe equation of state with a maximal correlation error of 6.69%. __________ Translated from Journal of East China University of Technology (Natural Science Edition), 2007, 33(4): 445–449 [译自: 华东理工大学学报(自然科学版)]  相似文献   

5.
Fe-doped PbTiO3 (PT) powder and bulk materials were prepared successfully by sol-gel technique and a subsequent sintering process using Fe (C5H5)2 as a dopant agent. The effects of pH and temperature on the Fe-doped PT system were investigated. Thermogravimetry/differential thermal analysis (TG/DTA), X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to analyze the composition and the microstructure of the PT ceramics. The results indicated that the thermal decomposition of xerogel included three stages: volatilization of adsorption water and organic composition, oxygenolysis of n-butyl and acetate, and transformation of the crystalline phase. Well-stabilized collosol and gel could be obtained at 60°C and pH = 4.5. It was found that PbTiO3, PbFe2O4, and TiO2 crystalline appeared in the Fe-doped PT system when the mass fraction of the dopant Fe was 0.03%. Furthermore, from STM analysis, it could be seen that the grain size of doped PT ceramics was homogeneous and about 1–2 μm, and the pore of the PT ceramic was small. As a result, the PT ceramic had high tightness. __________ Translated from Journal of Harbin Institute of Technology, 2007, 39 (1): 165–168 [译自: 哈尔滨工业大学学报]  相似文献   

6.
The effects of MgO promoter on the physicochemical properties and catalytic performance of Ni/Al2O3 catalysts for the partial oxidation of methane to syngas were studied by means of BET, XRD, H2-TPR, TEM and performance evaluation. It was found that the MgO promoter benefited from the uniformity of nickel species in the catalysts, inhibited the formation of NiAl2O4 spinel and improved the interaction between nickel species and support. These results were related to the formation of NiO-MgO solid solution and MgAl2O4 spinel. Moreover, for the catalysts with a proper amount of MgO promoter, the nickel dispersiveness was enhanced, therefore making their catalytic performance in methane partial oxidation improved. However, the excessive MgO promoter exerted a negative effect on the catalytic performance. Meanwhile, the basicity of MgO promoted the reversed water-gas shift reaction, which led to an increase in CO selectivity and a decrease in H2 selectivity. The suitable content of MgO promoter in Ni/Al2O3 catalyst was ∼7 wt-%. Translated from Journal of Fuel Chemistry and Technology, 2006, 34(4): 450–455 [译自: 燃料化学学报]  相似文献   

7.
By considering the features of fluidized-bed reactors and the kinetic mechanism of biomass gasification, a steady-state, isothermal, one-dimensional and two-phase mathematical model of biomass gasification kinetics in bubbling fluidized beds was developed. The model assumes the existence of two phases — a bubble and an emulsion phase — with chemical reactions occurring in both phases. The axial gas dispersion in the two phases is accounted for and the pyrolysis of biomass is taken to be instantaneous. The char and gas species CO, CO2, H2, H2O, CH4 and 8 chemical reactions are included in the model. The mathematical model belongs to a typical boundary value problem of ordinary differential equations and its solution is obtained by a Matlab program. Utilizing wood powder as the feedstock, the calculated data show satisfactory agreement with experimental results and proves the effectiveness and reliability of the model. __________ Translated from Chemical Engineering (China), 2007, 35(10): 23–26 [译自: 化学工程]  相似文献   

8.
We have studied the CO hydrogenation over a Co/SiO2 catalyst under mild reaction conditions (up to 4.4 bar total pressure, H2/CO = 2,T = 483K) and performed a post-reaction analysis of the chemical surface composition by means of secondary ion mass spectrometry (SIMS) and temperature-programmed reaction (TPR) in hydrogen gas. A hydrocarbon chain growth probability α = 0.78 was found in the catalytic studies. The SIMS analysis revealed the existence of individually adsorbed CxHy species up to C8Hy, in accordance with end-on bonding to the catalyst surface. These species were removed from the catalyst surface in the subsequent H2-TPR experiment. Significant methane desorption occurred at temperatures (⩾500 K) well above those of the longer-chain hydrocarbons indicating either an increasing hydrogenolysis activity of Co metal during H2-TPR or the presence of a more tightly bound “carbidic” adsorbate under FT conditions. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
The effect of longer paraffins on the mechanism of the HC-SCR reaction over a 1.91 wt.% Ag/alumina catalyst was investigated by kinetic studies. Hexadecane (C16H34) was chosen as a model compound as it is also a representative molecule for a second generation biodiesel consisting of only long-chain paraffins. The kinetic behaviour of the catalytic reduction of NOx was examined at steady-state conditions in the temperature range 250–550 °C (50 °C ramping) and by using the following gas concentrations: PNO = 100, 250, 500, 750 or 1000 ppm, Phexadecane = 31, 94, 188, 281 or 375 ppm and PO2=1.5, 3, 4.5, 6 or 9 vol.%. Results showed that in the temperature range 250–425 °C high hexadecane concentration had an inhibiting effect on the NO reduction. At temperatures above 350 °C the apparent reaction orders for hexadecane with respect to hexadecane increased to close or above 1. Reaction orders towards NO were close to 0.55 indicating that NO adsorption on the catalyst surface is stronger than hexadecane adsorption. Based on the experimental data it is proposed that small clusters alone cannot be the active sites for HC-SCR over Ag/Al2O3 but the important requirement for high activity over the catalyst is the local concentrations of hydrocarbon and NO on the interface of silver and the support.  相似文献   

10.
NiB/SiO2 amorphous alloy catalyst was prepared by power electroless plating method and characterized by induction coupled plasma (ICP), Brunauer-Emmett-Teller method (BET), transmission electron microscope (TEM) and X-ray diffraction (XRD) techniques. The catalytic performance of NiB/SiO2 was investigated for the hydrogenation of furfuryl alcohol (FA) to tetrahydrofurfuryl alcohol (THFA). The effects of operational conditions, such as reaction temperature, pressure, and stirring rate were carefully studied. The proper conditions were determined as the following: pressure 2.0 MPa, temperature 120°C and stirring rate 550 r/min. A typical result with FA conversion of 99% and THFA selectivity of 100% was obtained under such conditions, which was close to that over Raney Ni. Translated from Journal of Fuel Chemistry and Technology, 2006, 34(4), 483–486 [译自: 燃料化学学报]  相似文献   

11.
Mesoporous aluminosilicate MCM-48 containing zeolite secondary building units in the pore wall has been synthesized in alkaline media with a two-step procedure. The aluminosilicate precursors comprising zeolite secondary building units were first synthesized by carefully controlling reaction conditions and then were assembled using co-templates of gemini surfactant [C18H37N(CH3)2(CH2)3-N(CH3)2C18H37]2+ (18-3-18) and triethanolamine (TEA). X-ray Diffraction (XRD) patterns of the as-made samples indicated that highly ordered mesostructured MCM-48 was formed. Transmission Electron Microscopy (TEM) images further verified the formation of MCM-48 with uniform cubic pore channel system having the pore opening diameter of about 25 ?. Compared with the conventionally synthesized MCM-48, the as-synthesized MCM-48 sample showed an adsorption band at 520–600 cm−1 in its FT-IR spectrum, which was assigned to five-membered ring vibration from zeolite structure. This suggested the presence of zeolite building units in the pore wall. N2 adsorption data showed that the material had a much higher specific surface area (1 200 m2/g) than the conventional MCM-48(1 100 m2/g). Finally, the catalytic performance of the as-made MCM-48 was evaluated by hydrogenation dealkylation reaction of heavy aromatic hydrocarbons. Catalytic results showed that the as-made MCM-48 catalyst exhibited higher conversion than the conventional MCM-48 catalyst. The as-made mesostructured MCM-48 may have a potential catalytic application in the conversion of bulky molecules. Translated from Journal of Fuel Chemistry and Technology, 2006, 34(1): 105–108 [译自: 燃料化学学报]  相似文献   

12.
Water-gas-shift reaction was carried our over a series of Mn-promoted Cu/Al2O3 catalysts in the temperature range of 448–533 K. The catalysts were characterized suitably by various techniques. The catalyst containing 8.55 wt% Mn was found to be the most active one among five catalysts tested. A maximum CO conversion of 90% was obtained over this catalyst at 513 K with a CO space-time of 5.33 h. The catalysts were found to be structure sensitive for the low-temperature water-gas shift reaction. A detailed kinetic study was performed for the reaction under investigation over the best catalyst. The kinetic data were fitted to two different models and the redox model was found to the better one than the other. From the estimated kinetic constant, the activation energy was determined to be 81 kJ/mol for the water-gas shift reaction in the temperature range of 448–463 K.  相似文献   

13.
A kinetic model of the pozzolanic reaction for the preparation of flue gas desulfurizers from fly ash and Ca(OH)2 was deduced on the basis of solid phase reaction kinetic theory. Kinetic expressions and parameters were obtained and verified by experiment. A comparison of calculated results with experimental results showed that precision in kinetic expressions was good. The apparent reaction rate constants of the pozzolanic reaction could be raised by increasing the specific surface area of fly ash and the hydration temperature, and by using a suitable additive. Translated from Chemical Reaction Engineering and Technology, 2006, 22(4): 329–334 [译自: 化学反应工程与工艺]  相似文献   

14.
Using chemical reduction-deposition method, a type of metallic cobalt-decorated multi-walled carbon nanotubes, noted as y%(mass percentage)Co/MWCNTs, was prepared. TEM, SEM and XRD measurements demonstrated that the metallic cobalt was evenly coated on the MWCNT substrate, with granule-diameter of the Co x 0 -crystallites of 5–8 nm. Using the y%Co/MWCNTs as support, a type of supported Co–Mo–K sulfide catalysts, noted as x%(Co i Mo j K k )/(y%Co/MWCNTs), for higher alcohol synthesis (HAS) was developed. It was experimentally shown that using the Co-modified MWCNTs in place of simple MWCNTs or activated carbon (AC) as the catalyst support led to a significant increase in activity of CO hydrogenation conversion and improvement in the selective formation of C2+-alcohols. Under the reaction condition of 5.0 MPa, 613 K, CO/H2/N2 = 45/45/10 (v/v) and GHSV = 3600 mlSTPh−1 g −cat. −1 , the observed STY of C1–4-alcohols reached 154.1 mgh−1g −cat. −1 at 12.6% conversion of CO over the 11.6%(Co1Mo1K0.6)/(6.4%Co/MWCNTs) catalyst, which was 1.76 and 2.33 times as high as that (87.7 and 66.1 mgh−1g −cat. −1 ) of the reference systems supported by simple MWCNTs and AC respectively. Ethanol became the predominant product of the CO hydrogenation, with carbon-based selectivity ratio of C2–4-alcohols to CH3OH reaching 3.6 in the products. It was experimentally found that using the Co-modified MWCNTs in place of simple MWCNTs or AC as the catalyst support caused little change in the apparent activation energy for the conversion of CO, but led to a slight increase in the molar percentage of catalytically active Mo-species (Mo4+) in the total Mo-amount at the surface of the functioning catalyst. Based upon the results of TPD investigation, it could be inferred that, under the reaction condition of HAS, there existed a considerably larger amount of adsorbed H-species and CO-species on the functioning catalyst, thus in favour of increasing the rate of a series of surface hydrogenation reactions in HAS.  相似文献   

15.
A comparative study of the influence of Co (or Ni) promoter loadings and the effect of different sulfurizing agents and sulfurizing temperatures on the structure, morphology and catalytic performance of Mo- or W-based hydrodesulfurization (HDS) catalysts was carried out. Catalyst performance using a tubular fixed-bed reactor and the HDS of thiophene as a model reaction was evaluated. The oxidic and sulfurized states of the HDS catalysts were characterized by laser Raman spectroscopy, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and high resolution transmission electron microscopy (HRTEM). It has been found that the urea-matrix combustion (UMxC) synthesis is a simple tool for preparing supported catalysts in a short period of thermal treatment. Several consecutive stages such as urea melting, metal precursor dissolution and chemical reactions take place before and upon combustion process. The C4H4S/H2-activated Co- (or Ni-) promoted MoS2 (or WS2) catalysts present a strong synergistic effect (SE) when the Co (or Ni)/Mo (or W) molar ratio is near to 0.5, whereas the C4/C 4 = molar ratios display a weak antagonistic effect. Alumina-supported Ni–W catalyst showed an optimal SE 2.5 times higher than those for Co (or Ni)-promoted Mo HDS catalysts. The kinetic parameters for thiophene-HDS reaction were also determined, suggesting that the C–S bond cleavage reaction for alumina-supported Co(Ni)–Mo HDS catalysts and H2 activation reaction for Ni-promoted WS2catalysts play an important role in the rate-limiting step.  相似文献   

16.
The intrinsic kinetics was studied for the synthesis of acetonitrile from amination–dehydrogenation of ethanol over the Co–Ni/γ–Al2O3 catalyst in the fixed-bed reactor. Experiments were carried out at reaction temperatures in the range 613–643 K, reactor pressure of 0.1 MPa, the ratios of volume feed velocity to catalyst volume (V0/VR) more than 12.99 min−1 and large excesses of ammonia concentration over that of ethanol. The power-law model was used to fit the experimental data, and the model parameters were estimated using the Matlab software. Finally, a reaction kinetic model was proposed to describe the reaction, the calculated activation energy was 51.18 kJ mol−1 and the reaction order to ethanol was 1.183.  相似文献   

17.
A model is developed based on a two‐stage hydrogenation of pyrolysis gasoline to obtain a C6–C8 cut suitable for extraction of aromatics. In order to model the hydrogenation reactors, suitable hydrodynamic and reaction submodels should be solved simultaneously. The first stage hydrogenation takes place in a trickle bed reactor. The reaction rates of different di‐olefines as well as hydrodynamic parameters of the trickle bed (i.e., catalyst wetting efficiency, pressure drop, mass transfer coefficient and liquid hold‐up) have been combined to derive the equations to model this reactor. The second stage hydrogenation takes place in a two compartment fixed bed reactor. Hydrogenation of olefines takes place in the first compartment while sulfur is eliminated from the flow in the second compartment. These reactions occur at relatively higher temperature and pressure compared to the first stage. The key component in this stage is considered to be cyclohexene, of which the hydrogenation was found to be the most difficult of the olefines present in the feed. The Langmuir‐Hinshelwood kinetic expression was adopted for the hydrogenation of cyclohexene and its kinetic parameters were determined experimentally in a micro‐reactor in the presence of the industrial catalyst. The model was solved for the whole process of hydrogenation, including hydro‐desulfurization. The predictions of the model were compared with actual plant data from an industrial scale pyrolysis gasoline hydrogenation unit and satisfactory agreement was found between the model and plant data.  相似文献   

18.
In this paper a global reaction kinetic model is used to understand and describe the NOx storage/reduction process in the presence of CO2 and H2O. Experiments have been performed in a packed bed reactor with a Pt–Ba/γ-Al2O3 powder catalyst (1 wt% Pt and 30 wt% Ba) with different lean/rich cycle timings at different temperatures (200, 250, and ) and using different reductants (H2, CO, and C2H4). Model simulations and experimental results are compared. H2O inhibits the NO oxidation capability of the catalyst and no NO2 formation is observed. The rate of NO storage increases with temperature. The reduction of stored NO with H2 is complete for all investigated temperatures. At temperatures above , the water gas shift (WGS) reaction takes place and H2 acts as reductant instead of CO. At , CO and C2H4 are not able to completely regenerate the catalyst. At the higher temperatures, C2H4 is capable of reducing all the stored NO, although C2H4 poisons the Pt sites by carbon decomposition at . The model adequately describes the NO breakthrough profile during 100 min lean exposure as well as the subsequent release and reduction of the stored NO. Further, the model is capable of simulating transient reactor experiments with 240 s lean and 60 s rich cycle timings.  相似文献   

19.
PAA/Fe3O4 nanocomposites were prepared by mixing nano-Fe3O4 and polyacrylic acid (PAA) ethanol solution and then evaporating the solvent. The materials were characterized by transmission electron microscope (TEM), Fourier transform infrared spectroscope (FTIR), thermogravimetry analysis (TGA), dynamic ultra-micro hardness tester (DUMHT) and superconducting quantum interference device (SQUID) magnetometer. Results showed that PAA coordinated with nano-Fe3O4 to form a cross-linking structure. The presence of nano-Fe3O4 enhanced the thermal stability of the nanocomposite. The elasticity and hardness of the nanocomposite increased, and the indentation depth reduced with the increase of Fe3O4 content in the composites. The nanocomposites showed superparamagnetic properties at 300 K. Translated from Acta Scientiarum Naturalium Universitatis Sunyatseni, 2006, 45(5): 47–50 [译自: 中山大学学报 (自然科学版)]  相似文献   

20.
A WNiPd/TiO2Al2O3 mild hydrocracking catalyst deactivation has been studied in a small pilot plant unit. OTMHCK technology can produce low sulfur, high cetane number diesel at constant conversion with acceptable cycle length by increasing initial temperature as a function of time on stream. Three sets of tests were performed for 3 months at constant operating temperature using the same catalyst. At the start and at the end of the run the catalyst activity and selectivity were tested at different temperatures. Spent catalyst was characterized using chemical analysis, 13C NMR, XPS, and ammonia adsorption techniques. The hydrocracking reactions were modeled using a lump model including 63-equation reactions, an empirical reactivity function and three distribution functions that included hydrogenation, cracking, and ring opening in liquid phase. Deactivation reaction was simulated using a Levenspiel's two sites type of deactivation mechanism. A Genetic Algorithm tool was used to obtain the deactivation constant using a set of previously determined kinetic constants. This set takes into account the aromatics adsorption on metal and acid sites. The results confirm that deactivation changes the relative rate of hydrogenation/hydrogenolysis, cracking and dealkylation reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号