首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The attenuated total reflection infrared spectroscopy (ATR), the lap shear test, and the contact angle measurement are used to analyze adhesion properties of the thermoplastic olefin elastomer (TPO) after plasma exposure. TPO is dip-coated with maleic anhydride (MA) that mixed with benzophenone (BP), benzoyl peroxide, and azobisisobutyronitrile initiators before exposed to nitrogen plasma. The amounts of grafted MA, the lap shear strength (LSS), and the surface energy depend on the plasma exposure time and the type of initiator applied. An increase in plasma exposure results in the increase of the total surface energy and the polar groups, but a decrease in the LSS of the grafted TPO. The MA grafted greatly improves the LSS of TPO and the specimen prepared with BP initiator has the greatest LSS after plasma exposure. It is also confirmed that the nature of the grafted layer could have a significant effect on the adhesion strength.  相似文献   

2.
The adhesion properties of a thermoplastic olefin elastomer (TPO) after ozone exposure are studied with attenuated total reflection infrared spectroscopy (ATR), the lap shear test, and contact angle measurement. The ozone treatment is applied after the TPO is dip-coated with acrylic acid (AA) that is mixed with benzophenone, benzoyl peroxide (BPO), and azobisisobutyronitrile initiators. ATR spectra confirm the presence of grafted AA on TPO, the amount of which depends on the ozone exposure time and the type of initiator applied. The total surface energy, the polar component, and lap shear strength (LSS) of the grafted TPO increase with increasing ozone exposure time and also vary with the initiator. All AA-grafted TPOs have much greater LSS than the TPO without AA. The greatest LSS is obtained from the specimen grafted with AA and BPO. In addition, the small differences in surface energies and failure strains associated with the great changes in LSS obtained from various specimens implies that the nature of the grafted layer has a significant effect on the adhesion strength.  相似文献   

3.
The adhesion properties of a thermoplastic olefin elastomer (TPO), surface-grafted with maleic anhydride (MA) under ozone exposure, were analysed. TPO samples were dip-coated with maleic anhydride (MA) that was mixed with one of the initiators benzophenone (BP), benzoyl peroxide (BPO), or azoisobutyronitrile (AIBN) before being exposed to ozone. The adhesion properties of the TPO samples after ozone exposure were analysed by attenuated total reflection infrared spectroscopy (ATR-IR), lap shear tests and contact angle measurements. ATR-IR spectra confirmed that the amount of grafted MA increased with the ozone exposure time and changed with the type of initiator used. The grafted MA greatly improved the lap shear strength (LSS) of the TPO in TPO/epoxy adhesive/steel laminates. The LSS also depends on the initiator applied. The total and the polar component of the surface energy of the MA-grafted TPO increased after ozone exposure, following the order AIBN < BPO < BP, while the lap shear strength increased in the order of BP < AIBN < BPO after long time ozone treatment. The specimen grafted using BPO as initiator has the greatest LSS.  相似文献   

4.
Surface thermal graft copolymerization with concurrent lamination was carried out between two argon plasma‐pretreated polytetrafluoroethylene (PTFE) films in the presence of aqueous zwitterionic solutions of N,N‐dimethyl‐N‐methacrylamidopropyl‐N‐(3‐sulfopropyl)ammonium betain (DMASAB), N,N‐dimethyl(methacryloylethyl)ammonium propansulfonate (DMAPS), and 1‐(3‐sulfopropyl)‐2‐vinylpyridinium betaine (SVPB), as well as an aqueous ionic solution of potassium‐2‐sulfopropylacrylate (SPA) and potassium‐2‐sulfopropyl methacrylate (SPM), under atmospheric conditions and in the complete absence of an added initiator and system degassing. The lap shear adhesion strength between the PTFE films from simultaneous grafting and lamination depended on the argon plasma pretreatment time of PTFE films, the thermal lamination temperature, the concentration of the monomer solution, and the ionic nature of the grafted chains. Lap shear adhesion strength greater than 120 N/cm2 and exceeding the yield strength of the PTFE substrate used could be readily obtained in most PTFE/zwitterion/PTFE assemblies after simultaneous thermal graft copolymerization and lamination. The chemical compositions of the graft‐copolymerized surfaces were studied by X‐ray photoelectron spectroscopy (XPS). © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 816–824, 1999  相似文献   

5.
Photoinitiated surface grafting of acrylic monomers has been carried out onto high strength polyethylene (HSPE) yarn by means of a continuous process. The grafting reaction is initiated by UV irradiation of the yarn after presoaking in an acetone solution of initiator and monomer. Four initiators, benzophenone (BP), 4-chlorobenzophenone (4-CBP), 2-hydroxy-2-cyclohexylacetophenone (HHA), and 2,2-dimethoxy-2-phenylacetophenone (DMPA), and two monomers, acrylic acid (AA) and acrylamide (AM), have been used. After short irradiation time (10 to 20 s) successful grafting is obtained, as shown by ESCA and IR-ATR spectra, dye adsorpotion from aqueous solution, and measurements of adhesion of single filaments to epoxy resin. Grafting efficiency of 74% has been reached for AA as monomer (26% is homopolymer). The tensile strength and modulus of the HSPE yarn are retained in the grafting process. The degree of surface grafting is mainly a function of structure and concentration of monomer and photoinitiator in the presoaking solution and of the irradiation conditions used. Increasing irradiation time gives increasing amounts of grafted polymer up to a certain limiting value. The reactivities of the four initiators have been compared showing the highest grafting yields of AA with BP and of AM with 4-CBP as photoinitiator. AA grafted HSPE yarn can be dyed to rather deep color by dipping in an aqueous solution of Crystal Violet. Increased dye absorption by a factor of up to seven has been measured for yarn grafted with AA to the maximum level obtained. The filaments of the grafted yarn show increased adhesion to epoxy resin by a factor of up to five compared with the ungrafted filaments.  相似文献   

6.
The influence of annealing and EBR component in injection-molded thermoplastic polyolefin (TPO) plaques on adhesion strength of CPO to TPO was investigated by a lap shear test. The TPO was fabricated as a blend of highly crystalline isotactic polypropylene (iPP) and low crystalline poly(ethylene-butene) impact modifier (EBR28). The CPO was a maleated chlorinated polypropylene containing 21.8 wt% Cl. High resolution pulsed force mode-atomic force microscopy (PFM-AFM) combined with the image analysis was used to characterize the interfacial properties of the lap shear joints. Based on PFM-AFM stiffness images, a “transition zone” with a width on the order of 600-1500 nm was observed between CPO and the TPO substrate that may play an important role in affecting the adhesion strength. This zone exhibits enhanced stiffness after annealing at 120 °C. The PFM-AFM images further show that the interface between iPP and CPO without annealing is very sharp and the interface between TPO and CPO without annealing is wider than the interface between iPP and CPO. Annealing (120 °C/20 min) leads to broadening of the interface between TPO and CPO. The thickness of the interface in lap shear joints was obtained from the z-directional line profiles of the stiffness maps. The fracture surface morphology was revealed by scanning electronic microscope (SEM), which showed that the fracture structure varied with both the addition of EBR28 in TPO plaques and the annealing condition. Finally, a correlation of interfacial properties to adhesion was obtained: higher stiffness in the transition zone coupled with a thicker interface resulted in stronger adhesion and cohesive failure within the CPO and TPO. In the case of CPO/iPP, the narrow interface and absence of a clearly defined transition zone correlated with interfacial failure between these components.  相似文献   

7.
The purpose of this study was to enhance blood compatibility of polyethylene (PE) films. Glycidyl methacrylate (GMA) was grafted onto the surface of PE by Ar plasma pretreatment and UV‐induced graft polymerization without photo‐initiator, then heparin was immobilized onto the poly (glycidyl methacrylate) segments. The surface compositions and microstructure of GMA graft polymerized PE films were studied by X‐ray photoelectron spectroscopy (XPS) and Attenuated Total Reflectance Fourier Transfer Infrared (ATR‐FTIR) spectroscopy. It was confirmed that heparin was successfully immobilized onto the surface of PE films by XPS analysis. The antithrombogenicity of the samples was determined by the activated partial thromboplastin time (APTT), prothrombin time (PT), thrombin time (TT), and plasma recalcification time (PRT) tests and platelet adhesion experiment. Results indicated that the antithrombogenicity of modified PE was improved remarkably. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2014–2018, 2004  相似文献   

8.
赵明亮  KIM Yun-mi 《粘接》2014,(2):57-60
对比了酚醛胺NX-2003D及聚酰胺Versamid140与环氧树脂Epon828胶粘剂的力学强度,及在室温、低温、潮湿面的粘接强度。通过设计的建筑胶配方,研究了其室温及低温的粘接强度增长速度,及耐湿热老化性能。结果表明,在常温固化时,NX-2003D体系具有与Versamid140体系相近的良好力学强度及粘接性能;但在低温条件下,NX-2003D体系表现出优于聚酰胺140体系的固化性能,在0℃固化7 d及14 d后,NX-2003D体系的拉伸剪切强度分别达到5 MPa及11 MPa以上,可以满足使用要求。NX-2003D体系的耐湿热老化性能及对潮湿面的粘接强度,也明显优于聚酰胺140体系。  相似文献   

9.
BACKGROUND: Polytetrafluoroethylene (PTFE) is utilized in many engineering applications, but its poor wettability and adhesion properties with other materials have limited its use. The study reported was aimed at achieving surface modification of PTFE films by radiofrequency NH3 and N2 plasma treatment, followed by graft copolymerization, in order to improve the interfacial adhesion of PTFE and bismaleimide. RESULTS: X‐ray photoelectron spectroscopy results showed that a short‐time plasma treatment had a distinct defluorination effect and led to nitrogen functional group formation. The nitrogen chemical bonding form was different for NH3 and N2 plasma treatments. Under the same experimental conditions, the NH3 plasma exhibited a better etching effect than did the N2 plasma. Contact angle measurement showed an improvement in both surface energy and wettabliity by short‐time plasma treatment. The concentration of the surface‐grafted bismaleimide on PTFE increased after the plasma pretreatment. The lap shear strength between PTFE and bismaleimide increased significantly after surface modification. CONCLUSION: This study found that plasma treatment caused changes in surface chemistry, thus leading to an increase of the wettability of PTFE surfaces. Hence, the adhesion properties of PTFE with bismaleimide were significantly improved. Copyright © 2008 Society of Chemical Industry  相似文献   

10.
Five kinds of fluorene‐based polyimides (PIs) based on 4,4′‐oxydiphthalicanhydride (ODPA), 9,9′‐bis(4‐aminophenyl)fluorene (BAFL), and 3,4′‐diaminodiphenyl ether (3,4′‐ODA) were synthesized through two‐step method. The partially or fully imidized PI films were cast from poly(amic acid) (PAA) solution and were imidized by far‐infrared radiation at various temperatures. The degree of imidization was characterized by FT‐IR and TGA. The fully imidized PI films were characterized by DMTA, TGA, and tensile tests. The partially imidized PI films were adhered to stainless steel plates for preparing the single lap joints. Lap shear strength (LSS) at room temperature was measured to compare the adhesive strength of single lap joint. Fractured surfaces were analyzed using scanning electron microscopy (SEM). The effects of fluorene content on thermal, tensile, and adhesion properties of PIs were elaborately studied. The results showed that PI films exhibited high glass transition temperature (Tg), good thermalplasticity, and thermal stability. The LSS of PIs increased abruptly with the incorporation of fluorene groups. The LSS of PI‐50/50 was the highest, which was 22.3 MPa. The LSS of PI‐50/50 was also measured at high temperature to investigate the thermal resistance of fluorene‐based PI adhesive. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers.  相似文献   

11.
In this article, the surface of styrene‐butadiene rubber (SBR) was brushed with trichloroisocyanuric acid (TCI) (1 or 2 wt % in ethyl acetate) and then thermally treated under different conditions. The chemical modification was characterized by contact angle measurement and surface energy, ATR‐FTIR spectroscopy, scanning electron microscopy (SEM), and single‐lap shear test. The results revealed that the increase of the chlorination temperature was very effective for SBR surface modification by TCI, leading to enhanced surface wettability and shear strength within several minutes. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

12.
A simple technique for the lamination of a conductive polymer film to an inert dielectric polymer film was demonstrated. The electrochemically synthesized and p‐toluenesulfonic acid‐doped polypyrrole (PPY) film was laminated simultaneously to the argon plasma‐pretreated PTFE film during the thermally induced graft copolymerization of the PTFE surface with a functional monomer. The graft copolymerization was carried out using glycidyl methacrylate (GMA) monomer containing 20% v/v hexamethyldiamine (HMDA) and in the absence of any polymerization initiator. Thermally induced graft copolymerization of the GMA monomer on the PPY surface was minimal. The lap shear and T‐peel adhesion strengths of the laminates were found to be dependent on the GMA graft concentration on the PTFE surface, which, in turn, was affected by the plasma pretreatment time of the film. To increase the GMA graft concentration for the enhancement of adhesion strength, the plasma‐pretreated PTFE surfaces were premodified via UV‐induced graft copolymerization with GMA prior to the simultaneous thermal graft copolymerization and lamination process. The modified surfaces and interfaces were characterized by X‐ray photoelectron spectroscopy (XPS). Through XPS measurements of the delaminated surfaces, it was found that the PPY/PTFE laminates failed predominantly by cohesive failure inside the PTFE substrate. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 716–727, 2001  相似文献   

13.
Silicone rubber has been used as a biomaterial for more than two decades and displays good mechanical and optical properties, but its chemical nature, poor antithrombogenicity, as well as its hydrophobicity, prevents its use in many demanding biomedical applications. In order to provide modified silicone with enhanced haemocompatibility, surface modification techniques were used. Ozonization was used to introduce active peroxide groups onto the silicone film surface and, subsequently, graft polymerization of N,N′‐dimethyl‐N‐methacryloyloxyethyl‐N‐(3‐sulfopropyl) ammonium (DMMSA), a zwitterionic sulfobetaine structure, onto the ozone activated silicone surface was conducted. Surface analysis was accomplished by means of attenuated total reflectance‐Fourier‐transform infrared (ATR‐FTIR), and X‐ray photoelectron spectra (XPS), and scanning electron microscopy (SEM) and contact angle measurement. ATR‐FTIR and XPS investigation confirmed the graft polymerization. The grafted film possessed a relatively hydrophilic surface as indicated by contact angle measurement. The blood compatibility of the grafted films was evaluated by platelet adhesion in platelet‐rich plasma (PRP) and protein adsorption in bovine fibrinogen using silicone film as the reference. No platelet adhesion was observed for the grafted films incubated in PRP for 120 min. The protein adsorption was reduced on the grafted films after incubated in bovine fibrinogen for 120 min. These results confirmed that the improved blood compatibility was obtained by grafting this new zwitterronic sulfobetaine structure onto silicone film. Copyright © 2003 Society of Chemical Industry  相似文献   

14.
The thermal stability and adhesion properties, such as lap‐shear strength of hot‐melt adhesives were obtained from amorphous poly(α‐olefins) and thermoplastic rubber [styrene–ethylene–butylene copolymer (SEBS)] blends. The addition of SEBS increased the toughness and viscosity and decreased the lap‐shear strength of the hot‐melt adhesive. Terpene tackifier resin offered enhanced lap‐shear strength; this was more effective when combined tackifier resin was added on the hot‐melt adhesive. Only a small amount of wax and antioxidant affected the thermal stability and lap‐shear strength of the hot‐melt adhesive. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

15.
Single lap shear adhesion measurements on model isotactic polypropylene and thermoplastic polyolefin (TPO) substrates which sandwich a chlorinated polyolefin (CPO) show similar values of the fracture strength, as determined from the stress at break, but much larger deformation at break for the substrates that contain a copolymer of ethylene with 9 wt% butane (EBR9) as an impact modifier. We also found for sections cut from a large format (300 × 100 mm) plaque of TPO12 (12 wt% EBR9), that the fracture energy increased as a function of distance from the gate. ATR-FTIR measurements on these sections indicated that there was a variation in the EBR content in the near-surface region of the substrate, and that stronger adhesion correlated with an increase of EBR content at or near the surface.  相似文献   

16.
The photoinitiated grafting of N‐vinylpyrrolidone (NVP) onto poly(lactic acid) (PLA) film with the use of benzophenone (BP) as the initiator, modified the natural hydrophobic PLA behavior to an hydrophilic film with desirable wettability. The surface photografting parameters‐percent conversion of monomer to overall photopolymerization (Cp), percent conversion of monomer to the photograft polymerization (Cg), and grafting efficiency (Eg) were calculated. The resulting film surface was analyzed using ATR‐FTIR and UV spectroscopy, derivative spectroscopy and water contact angle. Besides, we demonstrated that the grafted polyvinylpyrrolidone chains could easily react with iodine to form a complex as the homopolymer does with antibacterial activity. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

17.
Ar plasma‐induced graft polymerization of poly(ethylene glycol) (PEG) on Ar plasma pretreated poly(methyl methacrylate) (PMMA) surfaces was carried out to improve the antistatic properties. The surface composition and microstructure of the PEG‐grafted PMMA surfaces from plasma induction were characterized by attenuated total reflectance Fourier transfer infrared (ATR‐FTIR) spectroscopy, water contact angles (CA), and atomic force microscopy (AFM) measurements. The measurements revealed that the antistatic properties can be remarkably improved with the surface resistivity of PEG‐grafted PMMA surface decreasing significantly by 3–6 orders of magnitude, with the optimum condition for polymerization grafted onto the Ar plasma pretreated PMMA surface being 40 W for RF power and 3 min for glow discharge time. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

18.
Acrylic acid (AA)‐grafted poly(vinylidene fluoride) (PVDF) hollow fiber membrane was obtained by ultrasonic wave‐assisted graft polymerization. The grafting density (GD) of AA on the PVDF membrane surface could be controlled by altering the reaction conditions, such as ultrasonic time, ultrasonic power, monomer concentration and initiator concentration. The attenuated total reflectant Fourier transform infrared spectra (FITR‐ATR) and X‐ray photoelectron spectroscopy were used to investigate the chemical composition of modified membranes. The changes of surface morphology and roughness were characterized by field emission scanning electron microscope and atomic force microscopy. Results show that AA was successfully grafted on the membrane surface. With increasing GD, the static water contact angle was decreased from 95.7 to 41.4°, indicating that hydrophilicity of modified membrane was significantly enhanced. Pure water flux before and after bovine serum albumin (BSA) contamination was measured. The modified membrane with the GD of 0.76 mg/cm2 has the highest water flux as high as 350 L/m2·h. When compared with the pristine membrane(M0), the flux recovered ratio was improved from 52.75 to 96.29% at the GD 2.76 mg/cm2 (M3), which suggested the protein fouling could be effectively prevented for the modified membrane. POLYM. ENG. SCI., 2018. © 2018 Society of Plastics Engineers POLYM. ENG. SCI., 59:E446–E454, 2019. © 2018 Society of Plastics Engineers  相似文献   

19.
Graphite/PEEK laminates were treated by argon plasma followed by air aging and then photografting of α- glycidyl ω- acrylate bisphenol A(GABA) to improve their adhesion characteristics. The effects of plasma time and power and photografting time on the epoxy bonded single lap shear joints between graphite/PEEK laminates were investigated. An optimum photografting time was found at which the single lap shear strength was optimized to 37 MPa compared to 28 MPa and 7 MPa obtained with air-aged argon plasma activated and pristine samples, respectively. Argon plasma treatment followed by air aging of graphite/PEEK laminate introduces surface peroxides and hydroperoxides and these when cleaved with ultraviolet (UV) light in the presence of the GABA monomer results in covalent grafting of the latter to PEEK/graphite laminate surface. The epoxy functionality of the GABA monomer then reacts with the epoxy adhesive. X-ray photoelectron spectroscopy (XPS) confirms the appearance of surface peroxides and hydroperoxides on air-aged argon plasma treated samples and disappearance of the same with UV irradiation. With UV irradiation of the air-aged argon plasma treated samples, XPS indicates the appearance of ester groups. Without the grafting monomer, UV irradiation in air cleaves the peroxide and causes oxidation resulting in the formation of surface esters. In the presence of the grafting monomer, UV irradiation results in covalent bonding of the monomer to the peroxide/hydroperoxide through the acrylate functionality resulting in increased concentration of ether linkages as confirmed by our XPS data; the ester functionality present in the grafted monomer caused the appearance of the ester peak in the XPS spectrum.  相似文献   

20.
Peel strength and lap shear strength between aluminum and polyimide were measured at different imidization temperatures. Polyimide was synthesized from 3,3′,4,4′-benzophe-nonetetracarboxylic dianhydride (BTDA) and 4,4′-diaminophenylether (ODA). The interfacial adhesion between polyimide and aluminum shows a maximum value at the imidization temperature of 320°C. To relate the intefacial adhesion strength with chemical interaction between polyimide and aluminum the Fourie, transform infrared spectroscopy (FTIR) ATR technique was used. In addition, morphological studies on the peeled surfaces were also carried out. © 1996 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号