共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Copolymerization of acrylonitrile (AN) with p‐trimethylsilylstyrene (TMSS) was carried out at 60°C in bulk and in solution in the presence of 2,2′‐azobisisobutyronitrile (AIBN). The reactivity ratios of AN (M1) and TMSS (M2) were determined to be r1 = 0.068 and r2 = 0.309. The effects of the AIBN concentration and that of the chain transfer agent CCl4 on the molecular weights (MWs) of the copolymers were investigated. An increase in the concentrations of AIBN or CCl4 in solution led to a decrease in MW. Poly(AN‐co‐TMSS‐co‐St) was synthesized in solution using AIBN as the initiator. The molar fraction of AN was 0.415, while the molar ratio of TMSS/St varied from 1 : 1 to 1 : 9. The transition temperatures and thermal and thermooxidative stabilities of poly(AN‐co‐TMSS) and poly(AN‐co‐TMSS‐co‐St) were investigated. The differential scanning calorimeter technique was used to determine the compatibility of the poly(AN‐co‐TMSS) and poly(AN‐co‐TMSS‐co‐St) with commercial poly(AN‐co‐St). All the blends show a single glass transition temperature, which indicates the compatibility of the blend components. The surface film morphology of the blends mentioned above was examined by X‐ray photoelectron spectroscopy. The data obtained indicate that the silicon‐containing copolymer is concentrated in the surface layer. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 1920–1928, 2000 相似文献
3.
Tian‐Ying Guo Guang‐Liang Tang Guang‐Jie Hao Moud‐Dao Song Bang‐Hua Zhang 《应用聚合物科学杂志》2002,86(12):3078-3084
Different poly(methyl methacrylate/n‐butyl acrylate)/poly(n‐butyl acrylate/methyl methacrylate) [P(BA/MMA)/P(MMA/BA)] and poly(n‐butyl acrylate/methyl methacrylate)/polystyrene [P(BA/MMA)/PSt] core‐shell structured latexes were prepared by emulsifier‐free emulsion polymerization in the presence of hydrophilic monomer 3‐allyloxy‐2‐hydroxyl‐propanesulfonic salt (AHPS). The particle morphologies of the final latexes and dynamic mechanical properties of the copolymers from final latexes were investigated in detail. With the addition of AHPS, a latex of stable and high‐solid content (60 wt %) was prepared. The diameters of the latex particles are ~0.26 μm for the P(BA/MMA)/P(MMA/BA) system and 0.22–0.24 μm for the P(BA/MMA)/PSt system. All copolymers from the final latexes are two‐phase structure polymers, shown as two glass transition temperatures (Tgs) on dynamic mechanical analysis spectra. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 3078–3084, 2002 相似文献
4.
Reactivity ratios and copolymer properties of 2‐(diisopropylamino)ethyl methacrylate with methyl methacrylate and styrene 下载免费PDF全文
Free radical copolymerization kinetics of 2‐(diisopropylamino)ethyl methacrylate (DPA) with styrene (ST) or methyl methacrylate (MMA) was investigated and the corresponding copolymers obtained were characterized. Polymerization was performed using tert‐butylperoxy‐2‐ethylhexanoate (0.01 mol dm?3) as initiator, isothermally (70 °C) to low conversions (<10 wt%) in a wide range of copolymer compositions (10 mol% steps). The reactivity ratios of the monomers were calculated using linear Kelen–Tüd?s (KT) and nonlinear Tidwell–Mortimer (TM) methods. The reactivity ratios for MMA/DPA were found to be r1 = 0.99 and r2 = 1.00 (KT), r1 = 0.99 and r2 = 1.03 (TM); for the ST/DPA system r1 = 2.74, r2 = 0.54 (KT) and r1 = 2.48, r2 = 0.49 (TM). It can be concluded that copolymerization of MMA with DPA is ideal while copolymerization of ST with DPA has a small but noticeable tendency for block copolymer building. The probabilities for formations of dyad and triad monomer sequences dependent on monomer compositions were calculated from the obtained reactivity ratios. The molar mass distribution, thermal stability and glass transition temperatures of synthesized copolymers were determined. Hydrophobicity of copolymers depending on the composition was determined using contact angle measurements, decreasing from hydrophobic polystyrene and poly(methyl methacrylate) to hydrophilic DPA. Copolymerization reactivity ratios are crucial for the control of copolymer structural properties and conversion heterogeneity that greatly influence the applications of copolymers as rheology modifiers of lubricating oils or in drug delivery systems. © 2015 Society of Chemical Industry 相似文献
5.
The free‐radical‐initiated copolymerization of 2‐(4‐acetylphenoxy)‐2‐oxoethyl‐2‐methylacrylate (AOEMA) and 2‐(4‐benzoylphenoxy)‐2‐oxoethyl‐2‐methylacrylate (BOEMA) with 2‐[(4‐fluorophenyoxy]‐2‐oxoethyl‐2‐methylacrylate (FPEMA) were carried out in 1,4‐dioxane solution at 65°C using 2,2′‐azobisisobutyronitrile as an initiator with different monomer‐to‐monomer ratios in the feed. The monomers and copolymers were characterized by FTIR and 1H‐ and 13C‐NMR spectral studies. 1H‐NMR analysis was used to determine the molar fractions of AOEMA, BOEMA, and FPEMA in the copolymers. The reactivity ratios of the monomers were determined by the application of Fineman‐Ross and Kelen‐Tudos methods. The analysis of reactivity ratios revealed that BOEMA and AOEMA are less reactive than FPEMA, and copolymers formed are statistically in nature. The molecular weights (M w and M n) and polydispersity index of the polymers were determined using gel permeation chromatography. Thermogravimetric analysis of the polymers reveals that the thermal stability of the copolymers increases with an increase in the mole fraction of FPEMA in the copolymers. Glass transition temperatures of the copolymers were found to decrease with an increase in the mole fraction of FPEMA in the copolymers. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 相似文献
6.
Jaroslav Stejskal 《Polymer International》2005,54(1):108-113
Chemical heterogeneity can influence the properties of statistical copolymers. It is shown that any integral property of a copolymer will depend on the chemical heterogeneity if such a property is a non‐linear function of copolymer composition. This is illustrated by means of the conductivity of copolymers of aniline and 2‐bromoaniline. The monomer reactivity ratios of this monomer pair are rA (aniline) = 0.94 and rB (2‐bromoaniline) = 0.31. The dependence of conductivity on the copolymer composition is non‐linear. Consequently, the conductivity depends on the compositional distribution, ie on the extent of chemical heterogeneity. Heterogeneous high‐conversion copolymers have lower conductivity than corresponding relatively homogeneous low‐conversion copolymers. The change in the average copolymer composition with increasing conversion is demonstrated for a copolymerization mixture containing 30 mol% aniline. The conductivity decreases at the same time as the chemical heterogeneity of the copolymer develops. The change in the average copolymer composition alone cannot explain the observed conductivity decrease. The conductivity is dependent not only on average composition but also on the chemical composition distribution. Copyright © 2004 Society of Chemical Industry 相似文献
7.
Copolymers of 1‐vinyl‐1,2,4‐triazole (VTAz) and acrylic acid (AA) having different mole ratios were synthesized using free radical‐initiated solution polymerization in dimethylformamide at 70 °C with α,α′‐azobisisobutyronitrile as initiator in nitrogen atmosphere. The compositions of the synthesized copolymers for a wide range of monomer feeds were determined using Fourier transform infrared (FTIR) spectroscopy through recorded absorption bands for VTAz (1510 cm?1, C?N (triazole ring) stretching mode) and AA (1710 cm?1, C?O stretching mode) units. The structures of the copolymers were characterized using FTIR and 1H NMR spectroscopy. The copolymer compositions were also determined from 1H NMR analysis following proton signals of carboxyl group at 11.8–12.5 ppm of AA and of triazole ring at 7.5–8.1 ppm of VTAz. Monomer reactivity ratios for the VTAz‐AA pair were estimated using linear methods, i.e. Fineman–Ross (FR) and Kelen–Tüdös (KT). From FTIR evaluation, monomer reactivity ratios were calculated as r1 = 0.404 and r2 = 1.496 using the FR method and r1 = 0.418 and r2 = 1.559 using the KT method. These values were found to be very close to those obtained from NMR evaluation. The two cases r1r2 < 1 and r1 < r2 indicated the random distribution of the monomers in the final copolymers and the presence of a greater amount of AA units in the copolymer than in the feed, respectively. The observed relatively high activity of complexed growing radical‐AA? … VTAz was explained by the effect of complex formation between carbonyl groups and triazole fragments in chain growth reactions. Thermal behaviours of copolymers with various compositions were investigated using thermogravimetric and differential scanning calorimetric analyses. It was observed that thermal stabilities and glass transition temperatures of the copolymers increased resulting from complex formation between acid and triazole units. © 2012 Society of Chemical Industry 相似文献
8.
9.
4‐Acetamidophenyl acrylate (APA) was synthesized and characterized by IR, 1H and 13C NMR spectroscopies. Homo‐ and copolymers of APA with acrylonitrile (AN) and N‐vinyl‐2‐pyrrolidone (NVP) were prepared by a free radical polymerization. All the copolymer compositions have been determined by 1H NMR technique, and the reactivity ratios of the monomer pairs have been evaluated using the linearization methods Fineman–Ross, Kelen–Tudos, and extended Kelen–Tudos. Nonlinear error‐in‐variable model (EVM) method was used to compare the reactivity ratios. The reactivity ratios for copoly(APA–AN) system were APA(r1) = 0.70 and AN(r2) = 0.333, and for copoly(APA–NVP) system the values were APA(r1) = 4.99 and NVP(r2) = 0.019. Thermal stability and molecular weights of the copolymers are reported. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1919–1927, 2006 相似文献
10.
Shinji Kanehashi Yuko Tomita Hiroshi Kawakita Shuichi Sato Tetsuo Miyakoshi Kazukiyo Nagai 《应用聚合物科学杂志》2013,129(4):2036-2045
Poly[methacryloxypropylheptacyclopentyl‐T8‐silsesquioxane (MAPOSS)‐co‐3‐methacryloxypropyltris(trimethylsiloxy)silane (SiMA)] was synthesized through free radical polymerization. The physical and carbon dioxide (CO2) sorption properties of the copolymer membranes were investigated in terms of the MAPOSS content. As the MAPOSS content increases, the membrane density increased, suggesting a decrease in the fractional free volume. In addition, the thermal stability was improved with increasing the MAPOSS content. These are because of the polyhedraloligomericilsesquioxane (POSS) units that restrict the high mobility of poly(SiMA) segments. The glass transition temperature, Tg of the copolymers was single Tg based on the differential scanning calorimetry, suggesting that the copolymers were random and not phase separation. Based on the CO2 sorption measurement, the POSS units play a role in reducing Henry's dissolution by suppressing the mobility of the poly(SiMA) component, while POSS units increase the nonequilibrium excess free volume, which contributes to the Langmuir dissolution. Based on these results, the introduction of MAPOSS unit is one of the effective ways to improved the thermal stability and CO2 sorption property due to the enhancement of the polymer rigidity. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013 相似文献
11.
Copolymers of sodium o‐methacryloylaminophenylarsonate (o‐MAPHA‐Na) 1 and p‐methacrylolylaminophenylarsonate (p‐MAPHA‐Na) 2 with sodium acrylate (AA‐Na) 3 , sodium methacrylate (AM‐Na) 4 and acrylamide (AAD) 5 were prepared by free radical polymerization in aqueous media at 70°C using potassium persulfate (K2S2O8) as the initiator. The total monomer concentration was carried out at 0.5M and the feed ratio ( M1 : M2 ) was varied from 10 : 90 to 90 : 10 mol%. The kinetic study was carried out by dilatometric method. The copolymer compositions were calculated by arsenic content in the copolymers. The As content (ppm) was determined by atomic absorption spectrometry (AAS). The reactivity ratios (r1, r2) were estimated by the Kelen‐Tüdös linearization method as well as error‐in‐variables method using the computer program RREVM®. In all cases, r1 < 1 and r2 > 1, indicating a tendency to form random copolymers. The values suggest that the copolymers contain a larger proportion of comonomer (i.e., AA‐Na, AM‐Na, or AAD). Weight‐average molar masses (M w) of copolymers were determined by multi‐angle light scattering. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 相似文献
12.
13.
Polystyrene‐graft‐poly(ethylene glycol) copolymers (PS‐g‐PEG) were successfully synthesized using the “grafting‐through” method. The graft copolymers and the surface properties of their coats were characterized by 1 H‐NMR, gel permeation chromatography (GPC), differential scanning calorimetry (DSC), transmission electron microscopy (TEM), X‐ray photoelectron spectroscopy (XPS), static contact angle measurement, and atomic force microscopy (AFM). Both DSC and TEM indicated that the graft copolymers had a microphase separated structure. AFM showed the microphase separated structure also occurred at the coat surface, especially at high PEG content, which could also be indirectly confirmed by the XPS and contact angle results. The formation mechanism of the microphase separated structure was discussed. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1458–1465, 2007 相似文献
14.
Crystallization and melting behavior of poly(ε‐caprolactone‐co‐δ‐valerolactone) and poly(ε‐caprolactone‐co‐L‐lactide) copolymers with novel chain microstructures 下载免费PDF全文
Nuclear magnetic resonance spectroscopy (NMR) characterization of the statistical copolymers of this study showed that the poly(ε‐caprolactone‐co‐L‐lactide)s, with ε‐caprolactone (ε‐CL) molar contents ranging from 70 to 94% and ε‐CL average sequence length (lCL) between 2.20–9.52, and the poly(ε‐caprolactone‐co‐δ‐valerolactone)s, with 60 to 85% of ε‐CL and lCL between 2.65–6.08, present semi‐alternating (R→2) and random (R~1) distribution of sequences, respectively. These syntheses were carried out with the aim of reducing the crystallinity of poly(ε‐caprolactone) (PCL), needed to provide mechanical strength to the material but also responsible for its slow degradation rate. However, this was not achieved in the case of the ε‐caprolactone‐co‐δ‐valerolactone (ε‐CL‐co‐δ‐VAL). Non‐isothermal cooling treatments at different rates and isothermal crystallizations (at 5, 10, 21 and 37°C) were conducted by differential scanning calorimetry (DSC), and demonstrated that ε‐CL copolymers containing δ‐valerolactone (δ‐VAL) exhibited a larger crystallization capability than those of L‐lactide (L‐LA) and also arranged into crystalline structures over shorter times. The crystallization enthalpies of the ε‐CL‐co‐δ‐VAL copolymers during the cooling treatments and their heat of fusion (ΔHm) at the different isothermal temperatures were very large (i.e. ΔHc > 53 Jg?1) and in some cases, unrelated to the copolymer composition. In some compositions, such as the 60 : 40, Wide Angle X‐ray Scattering (WAXS) proved that that these two lactones undergo isomorphism and co‐crystallize in a single cell. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42534. 相似文献
15.
Anbanandam Parthiban Asawin Likhitsup Han Yu Christina LL Chai 《Polymer International》2010,59(2):145-154
Polystyrene terminated with benzyl alcohol units was employed as a macroinitiator for ring‐opening polymerization of ε‐caprolactone and L ‐lactide to yield AB‐ and ABC‐type block copolymers. Even though there are many reports on the diblock copolymers of poly(styrene‐block‐lactide) and poly(styrene‐block‐lactone), this is the first report on the poly(styrene‐block‐lactone‐block‐lactide) triblock copolymer consisting of two semicrystalline and degradable segments. The triblock copolymers exhibited twin melting behavior in differential scanning calorimetry (DSC) analysis with thermal transitions corresponding to each of the lactone and lactide blocks. The block derived from ε‐caprolactone also showed crystallization transitions upon cooling from the melt. In the DSC analysis, one of the triblock copolymers showed an exothermic transition well above the melting temperature upon cooling. Thermogravimetric analysis of these block copolymers showed a two‐step degradation curve for the diblock copolymer and a three‐step degradation for the triblock copolymer with each of the degradation steps associated with each segment of the block copolymers. The present study shows that it is possible to make pure triblock copolymers with two semicrystalline segments which also consist of degradable blocks. Copyright © 2009 Society of Chemical Industry 相似文献
16.
17.
The aim of this investigation was the copolymerization of a chiral monomer, (R)‐N‐(1‐phenylethyl) methacrylamide, with an achiral monomer, 2‐hydroxyethyl methacrylate (HEMA). The copolymerization characteristics as well as the chiroptical properties (optical rotation and circular dichroism) and their variation with copolymer composition and temperature are discussed. The copolymers are statistical and enriched in HEMA. The monomer reactivity ratio of the chiral monomer (r1) is 0.133 whereas that of HEMA (r2) is 1.042 based on the Kelen–Tudos method. The sequence of consecutive chiral monomer units predominates for a feed composition between 0.5 and 0.9 (mole fraction). On the other hand, the sequence of HEMA is uniform and it predominates for a feed composition of around 0.5 (mole fraction). The chiroptical properties of the copolymers do not vary linearly with the content of chiral units in the copolymers. The optical rotation and circular dichroism attain optimum values above 30–40 mol% of chiral monomer units in the copolymers. However, the circular dichroism of the copolymers varies linearly with the temperature. The chiral monomer being a more bulky structure is less reactive than HEMA. The nonlinear variation of chiroptical properties of the copolymers with the content of chiral units may be due to the secondary interaction in the copolymers associated with the hydrogen bonding involving the amide linkage (CONH) present in the pendant chromophore of the chiral monomer as well as the hydroxyl pendant group of HEMA and also the aromatic π–π interaction. Copyright © 2009 Society of Chemical Industry 相似文献
18.
Enzymatic surface treatment of poly (3‐hydroxybutyrate) (PHB), and poly (3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBV) 下载免费PDF全文
Nathalie Berezina Bopha Yada Thomas Godfroid Tangi Senechal Ren Wei Wolfgang Zimmermann 《Journal of chemical technology and biotechnology (Oxford, Oxfordshire : 1986)》2015,90(11):2036-2039
19.
A novel A2BA2‐type thermosensitive four‐armed star block copolymer, poly(N‐isopropyl acrylamide)2‐b‐poly(lactic acid)‐b‐poly(N‐isopropyl acrylamide)2, was synthesized by atom transfer radical polymerization and characterized by 1H‐NMR, Fourier transform infrared spectroscopy, and size exclusion chromatography. The copolymers can self‐assemble into nanoscale spherical core–shell micelles. Dynamic light scattering, surface tension, and ultraviolet–visible determination revealed that the micelles had hydrodynamic diameters (Dh) below 200 nm, critical micelle concentrations from 50 to 55 mg/L, ζ potentials from ?7 to ?19 mV, and cloud points (CPs) of 34–36°C, depending on the [Monomer]/[Macroinitiator] ratios. The CPs and ζ potential absolute values were slightly decreased in simulated physiological media, whereas Dh increased somewhat. The hydrophobic camptothecin (CPT) was entrapped in polymer micelles to investigate the thermo‐induced drug release. The stability of the CPT‐loaded micelles was evaluated by changes in the CPT contents loaded in the micelles and micellar sizes. The MTT cell viability was used to validate the biocompatibility of the developed copolymer micelle aggregates. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 4137–4146, 2013 相似文献
20.
Synthesis and properties of sulfonated poly(phosphazene)‐graft‐poly(styrene‐co‐N‐benzylmaleimide) copolymers via atom transfer radical polymerization for proton exchange membrane 下载免费PDF全文
A series of sulfonated poly(phosphazene)‐graft‐poly(styrene‐co‐N‐benzylmaleimide) (PP‐g‐PSN) copolymers were prepared via atom transfer radical polymerization (ATRP), followed by regioselective sulfonation which occurred preferentially at the poly(styrene‐co‐N‐benzylmaleimide) sites. The structures of these copolymers were confirmed by Fourier transform infrared (FTIR) spectroscopy, 1H‐NMR, and 31P‐NMR, respectively. The resulting sulfonated PP‐g‐PSN membranes showed high water uptakes (WUs), low water swelling ratios (SWs), low methanol permeability coefficients, and proper proton conductivities. In comparison with non‐grafting sulfonated poly(bis(phenoxy)phosphazene) (SPBPP) membrane previously reported, the present membranes displayed higher proton conductivity, significantly improved the thermal and oxidative stabilities. Transmission electron microscopy (TEM) observation showed clear phase‐separated structures resulting from the difference in polarity between the hydrophobic polyphosphazene backbone and hydrophilic sulfonated poly(styrene‐co‐N‐benzylmaleimide) side chains, indicating effective ionic pathway in these membranes. The results showed that these materials were promising candidate materials for proton exchange membrane (PEM) in direct methanol fuel cell (DMFC) applications. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42251. 相似文献