首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Well‐defined poly(dimethylsiloxane)‐block‐poly(methyl methacrylate)‐block‐poly(2,2,3,3,4,4,4‐heptafluorobutyl methacrylate) (PDMS‐b‐PMMA‐b‐PHFBMA) triblock copolymers were synthesized via atom transfer radical polymerization (ATRP). Surface microphase separation in the PDMS‐b‐PMMA‐b‐PHFBMA triblock copolymer films was investigated. The microstructure of the block copolymers was investigated by transmission electron microscopy (TEM) and atomic force microscopy (AFM). Surface composition was studied by X‐ray photoelectron spectroscopy (XPS). The chemical composition at the surface was determined by the surface microphase separation in the PDMS‐b‐PMMA‐b‐PHFBMA triblock copolymer films. The increase of the PHFBMA content could strengthen the microphase separation behavior in the PDMS‐b‐PMMA‐b‐PHFBMA triblock copolymer films and reduce their surface tension. Comparison between the PDMS‐b‐PMMA‐b‐PHFBMA triblock copolymers and the PDMS‐b‐PHFBMA diblock copolymers showed that the introduction of the PMMA segments promote the fluorine segregation onto the surface and decrease the fluorine content in the copolymers with low surface energy. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

2.
Toughening of polyamide‐6 (PA6) by elastomers without sacrificing the modulus of blends has always been a challenge. In this study, PA6 was modified by poly(styrene‐alt‐maleic acid)‐block‐polystyrene‐block‐poly(n‐butyl acrylate)‐block‐polystyrene tetrablock copolymer (BCP) elastomer. The introduced acid groups in BCP resulted in the size of BCP inclusions down to nanometers in polyamide matrix. 10 wt % of BCP‐modified PA6 blends achieved five times increase in notched impact strength with almost no loss in modulus. Microscopic observations suggested the cavitation of elastomer particles and shear yielding of PA6 matrix to be the major toughening mechanism. This research provides a strategy to toughen polyamides by block copolymers at very low rubber content. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44849.  相似文献   

3.
Energetic block copolymer of polyglycidylazide‐b‐poly (azidoethyl methacrylate) (GAP‐b‐PAEMA) was synthesized and characterized. Macroinitiator PECH‐Br prepared via the reaction of 2‐bromoisobutyryl bromide with hydroxyl‐terminated polyepichlorohydrin (PECH‐OH) was used to initiate the atom transfer radical polymerization (ATRP) of chloroethyl methacrylate (CEMA). After azidation of the resulting copolymer, energetic copolymer GAP‐b‐PAEMA was obtained. Increase in the molecular weight determined by gel permeation chromatograph (GPC) is in agreement with the formation of block copolymer. Fourier transform infrared spectroscopy (FTIR) shows that the chlorine groups in the block copolymer can be substituted by azide group easily. Thermogravimetric analysis (TGA) shows that degradation of GAP‐b‐PAEMA involves two steps: the instantaneous decomposition of the azide groups followed by progressive scission of the polymer backbone. From differential scanning calorimetry (DSC) analysis, the GAP‐b‐PAEMA copolymer exhibits two glass transition temperatures (Tg) at ?18 and 36°C, suggesting that the synthesized copolymer is a thermoplastic elastomer. This research provides a new method for the synthesis of energetic polymer. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

4.
Two newly‐designed hydrocarbon surfactants, that is, poly(vinyl acetate)‐block‐poly(1‐vinyl‐2‐pyrrolidone) (PVAc‐b‐PVP) and PVP‐b‐PVAc‐b‐PVP, were synthesized using reversible addition–fragmentation chain transfer polymerization and used to form CO2/water (C/W) emulsions with high internal phase volume and good stability against flocculation and coalescence up to 60 h. Their structures were precisely determined by nuclear magnetic resonance, gel permeation chromatography, thermal gravimetric analysis, and differential scanning calorimetry. Besides low temperature and high CO2 pressure, the surfactant structures were the key factors affecting the formation and stability of high internal phase C/W emulsions, including the polymerization degrees of CO2‐philic block (PVAc) and hydrophilic block (PVP), as well as the number of hydrophilic tail. The surface tension of the surfactant aqueous solution and the apparent viscosity of the C/W emulsions were also measured to characterize the surfactants efficiency and effectiveness. The surfactants with double hydrophilic tails showed stronger emulsifying ability than those with single hydrophilic tail. The great enhancement of the emulsions stability was due to decrease of the interface tension as well as increase of the steric hindrance in the water lamellae, preventing a frequent collision of CO2 droplets and their fast coalescence. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46351.  相似文献   

5.
Advance polyamide‐6‐b‐polydimethylsiloxane (PA6‐b‐PDMS) multiblock copolymers were first synthesized via the polymerization in bulk. Binary carboxyl terminated PA6 was served as the hard segment and PDMS modified with hexamethylene diisocyanate (PDMS‐NCO) was the soft segment. A series of PA6‐b‐PDMS copolymers based on different content and length of soft segments were obtained. Interestingly, Differential scanning calorimetry (DSC) studies revealed no obvious change in melting temperature after introducing PDMS segments to copolymers. The high melting temperatures indicated these copolymers possess potential applications in automotive industry that require high continuous use temperatures. DSC and transmission electron microscopy studies both demonstrated increasing the length and the content of the soft segment contributed to increasing of the degree of microphase separation. However, the improvement of thermal stability resulting from PDMS segments was also observed by thermo gravimetric analysis. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41114.  相似文献   

6.
The aim of this study was to evaluate the role of different poly(ethylene glycol):poly(propylene glycol) (PEG:PPG) molar ratios in a triblock copolymer in the cure kinetics, miscibility and thermal and mechanical properties in an epoxy matrix. The poly(propylene glycol)‐block‐poly(ethylene glycol)‐block‐poly(propylene glycol) (PPG‐b‐PEG‐b‐PPG) triblock copolymers used had two different molecular masses: 3300 and 2000 g mol?1. The mass concentration of PEG in the copolymer structure played a key role in the miscibility and cure kinetics of the blend as well as in the thermal–mechanical properties. Phase separation was observed only for blends formed with the 3300 g mol?1 triblock copolymer at 20 wt%. Concerning thermal properties, the miscibility of the copolymer in the epoxy matrix reduced the Tg value by 13 °C, although a 62% increase in fracture toughness (KIC) was observed. After the addition of PPG‐b‐PEG‐b‐PPG with 3300 g mol?1 there was a reduction in the modulus of elasticity by 8% compared to the neat matrix; no significant changes were observed in Tg values for the immiscible system. The use of PPG‐b‐PEG‐b‐PPG with 2000 g mol?1 reduced the modulus of elasticity by approximately 47% and increased toughness (KIC) up to 43%. Finally, for the curing kinetics of all materials, the incorporation of the triblock copolymer PPG‐b‐PEG‐b‐PPG delayed the cure reaction of the DGEBA/DDM (DGEBA, diglycidyl ether of bisphenol A; DDM, Q3‐4,4′‐Diaminodiphenylmethane) system when there is miscibility and accelerated the cure reaction when it is immiscible. All experimental curing reactions could be fitted to the Kamal autocatalytic model presenting an excellent agreement with experimental data. This model was able to capture some interesting features of the addition of triblock copolymers in an epoxy resin. © 2018 Society of Chemical Industry  相似文献   

7.
This paper reports about the polymerization of ε‐caprolactam monomer in the presence of low molecular weight hydroxyl or isocyanate end‐capped ethylene‐butylene elastomer (EB) elastomers as a new concept for the development of a submicron phase morphology in polyamide 6 (PA6)/EB blends. The phase morphology, viscoelastic behavior, and impact strength of the polymerization‐designed blends are compared to those of similar blends prepared via melt‐extrusion of PA6 homopolymer and EB elastomer. Polyamide 6 and EB elastomer were compatibilized using a premade triblock copolymer PA6‐b‐EB‐b‐PA6 or a pure EB‐b‐PA6 diblock reactively generated during melt‐blending (extrusion‐prepared blends) or built‐up via anionic polymerization of ε‐caprolactam on initiating ? NCO groups attached to EB chain ends (polymerization‐prepared blends). Two compatibilization approaches were considered for the polymerization‐prepared blends: (i) the addition of a premade PA6‐b‐EB‐b‐PA6 triblock copolymer to the ε‐caprolactam monomer containing nonreactive EB? OH elastomer and (ii) generation in situ of a PA6‐b‐EB diblock using EB? NCO precursor on which polyamide 6 blocks are built‐up via anionic polymerization of ε‐caprolactam. The noncompatibilized blends exhibit a coarse phase morphology, either in the extruded or the polymerization prepared blends. Addition of premade triblock copolymer (PA6‐b‐EB‐b‐PA6) to a EB? OH /ε‐caprolactam dispersion led to a fine EB phase (0.14 μm) in the PA6 matrix after ε‐caprolactam polymerization. The average particle size of the in situ reactively compatibilized polymerization‐prepared blend is about 1 μm. The notched Izod impact strength of the blend compatibilized with premade triblock copolymer was much higher than that of the neat PA6, the noncompatibilized, and the in situ reactively compatibilized polymerization blends. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 2538–2544, 2004  相似文献   

8.
The crystallization behavior of the blending system consists of homopolymer poly(ethylene oxide) (h‐PEO) with different molecular weights, and polystyrene‐block‐poly (ethylene oxide)‐block‐polystyrene (PS‐b‐PEO‐b‐PS) triblock copolymer has been investigated by DSC measurements. The crystallization of PEO block (b‐PEO) in block copolymer occurs under much lower temperature than that of the h‐PEO in the bulk (ΔT > 65 °C), which is attributed to the homogeneous nucleation crystallization behavior of the b‐PEO microdomains. In both the “dry‐brush” and the “wet brush” blending systems, the homogeneous nucleation crystallization temperature of PS‐b‐PEO‐b‐PS/h‐PEO blends increases due to the increase of the domain size. The heterogeneous nucleation crystallization temperatures of h‐PEO in the wet brush blending systems are higher than that of the corresponding h‐PEO in the bulk. At the same time, the heterogeneous nucleation crystallization temperature of b‐PEO10000 decreases from 43°C to 30°C and 40°C in the h‐PEO600 and h‐PEO2000 blending systems, respectively, because of the stretching of the PEO chains in the wet brush. However, this kind of phenomenon does not happen in the dry brush blending systems. The self‐seeding procedure was used to further ascertain the nucleation mechanism in the crystallization process. As a result, the self‐seeding domains have been confirmed, and the difference between the dry brush and wet brush systems has been observed. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

9.
The condensation reaction product of poly(lactic acid) (PLA) and a hydroxyl‐terminated four‐armed poly(ε‐caprolactone) (PCL) was studied by size‐exclusion chromatography, DSC, and NMR. The use of both L ‐lactic acid (LLA) and rac‐lactic acid (rac‐LA) was studied and the use of two different catalysts, stannous 2‐ethylhexanoate [Sn(Oct)2] and ferrous acetate [Fe(OAc)2], was also investigated. The thermal stability and adhesive properties were also measured for the different formulations. The characterization results suggested the formation of a blend of PLA and a block‐copolyester of PLA and PCL. The results further indicated partial miscibility in the amorphous phase of the blend showing only one glass‐transition temperature in most cases, although no randomized structures could be detected in the block‐copolymers. The polymerization in the Fe(OAc)2‐catalyzed experiments proceeded slower than in the Sn(Oct)2‐catalyzed experiments. The discoloring of the polymer was minor when Fe(OAc)2 was used as catalyst, but significant when Sn(Oct)2 was used. The ferrous catalyst also caused a slower thermal degradation. Differences in the morphology and in the adhesive properties could be related to the stereochemistry of the poly(lactic acid). © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 196–204, 2004  相似文献   

10.
A new PDMS macroinitiator is proposed for the anionic ring‐opening polymerization of lactams. This α,ω‐dicarbamoyloxy caprolactam PDMS macroinitiator was readily obtained in quantitative yield, by an original synthesis scheme in two steps, which involved the scarcely reported reaction of isocyanates with silanol groups. It was then shown that this bifunctional macroinitiator enabled to synthesize triblock copolymers PA12‐b‐PDMS‐b‐PA12 by polymerization of lauryl lactam (LL) at high temperature (200°C) in inert atmosphere under conditions compatible with reactive extrusion processes. Another related high molar weight α,ω‐diacyllactam PDMS macroinitiator was also successfully used in the polymerization of LL under the same conditions, therefore overcoming the limitations formerly reported for this type of macroinitiators during the polymerization ε‐caprolactam (ε‐CL) at a much lower temperature (80°C). Triblock copolymers with a wide range of PA12 /molar weights (Mn: ~ 10,800–250,000 Da) were eventually obtained by using both types of macroinitiators. DMTA and DSC analyses showed that their thermal properties were strongly dependent upon their respective contents in soft and hard blocks. Such triblock copolymers already appear very promising for the highly effective in situ compatibilization of PA12/PDMS blends as shown by recent complementary results obtained in our laboratory. © 2006 Wiley Periodicals, Inc. J Appl PolymSci 102: 2818–2831, 2006  相似文献   

11.
A series of well‐defined and property‐controlled polystyrene (PS)‐b‐poly(ethylene oxide) (PEO)‐b‐polystyrene (PS) triblock copolymers were synthesized by atom‐transfer radical polymerization, using 2‐bromo‐propionate‐end‐group PEO 2000 as macroinitiatators. The structure of triblock copolymers was confirmed by 1H‐NMR and GPC. The relationship between some properties and molecular weight of copolymers was studied. It was found that glass‐transition temperature (Tg) of copolymers gradually rose and crystallinity of copolymers regularly dropped when molecular weight of copolymers increased. The copolymers showed to be amphiphilic. Stable emulsions could form in water layer of copolymer–toluene–water system and the emulsifying abilities of copolymers slightly decreased when molecular weight of copolymers increased. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 727–730, 2006  相似文献   

12.
A series of novel polyethylene‐b‐polyurethane‐b‐polyethylene (EUE) triblock copolymers is successfully prepared through a facile route combining the thiol‐ene chemistry, addition polymerization, and coupling reaction. The resulting EUE triblock copolymers are characterized by Nuclear magnetic resonance (1H NMR), Fourier transform‐infrared spectra (FT‐IR), High temperature gel permeation chromatography (HT‐GPC), Differential scanning calorimetry (DSC), Thermogravimetric analysis (TGA), and Transmission electron microscopy (TEM). In addition, the EUE triblock copolymers have been evaluated as compatibilizers in the polymer blends of thermoplastic polyurethane elastomer (TPU) and high‐density polyethylene (HDPE). The SEM results show that the compatibility of immiscible blends is enhanced greatly after the addition of EUE triblock copolymers. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42967.  相似文献   

13.
Poly(ethylene glycol terephthalate)‐b‐Poly(butylene terephthalate) copolymer (PEGT‐b‐PBT) films with different copolymer compositions were incubated in phosphate buffered saline under pH 7.4 at 37°C to study hydrolytic degradation and morphology up to 300 days. With the fall of intrinsic viscosity and mass of degraded films, SEM micrographs show that a set of particular and highly interconnected porous morphologies closely related to the content of PBT hard segments in copolymer is developed. Moreover, the variation in PBT crystallinity for copolymer films with weight ratio of 70/30 fluctuates with the development of degradation profiles, and PEGT content for copolymer films with weight ratio of 80/20 and 70/30 gradually decreases. The hydrolytic experiments demonstrate that the degradation of PEGT‐b‐PBT copolymer results from the cleavage of ester bonds between hydrophilic PEG and terephthalate. At the beginning period of degradation, PEGT‐b‐PBT copolymer films follow a typical mechanism of bulk degradation, and then undergo both bulk degradation and surface erosion, all of which finally generate the particular porous morphologies for copolymer films. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

14.
Plastic foams with nano/micro‐scale cellular structures were prepared from poly(propylene)/thermoplastic polystyrene elastomer (PP/TPS) systems, specifically the copolymer blends PP/hydrogenated polystyrene‐block‐polybutadiene‐block‐polystyrene rubber and PP/hydrogenated polystyrene‐block‐polyisoprene‐block‐polystyrene. These PP/TPS systems have the unique characteristic that the elastomer domain can be highly dispersed and oriented in the machine direction by changing the draw‐down ratio in the extrusion process. A temperature‐quench batch physical foaming method was used to foam these two systems with CO2. The cell size and location were highly controlled in the dispersed elastomer domains by exploiting the differences in CO2 solubility, diffusivity, and viscoelasticity between the elastomer domains and the PP matrix. The average cell diameter of the PP/TPS blend foams was controlled to be 200–400 nm on the finest level by manipulating the PP/rubber ratio, the draw‐down ratio of extrusion and the foaming temperature. Furthermore, the cellular structure could be highly oriented in one direction by using the highly‐oriented elastomer domains in the polymer blend morphology as a template for foaming.

  相似文献   


15.
Semi‐crystalline poly(L ‐lactic acid) (PLLA) was physically aged below the glass transition temperature for various times to investigate its amorphous phase behavior. During a differential scanning calorimetry heating scan, dual enthalpy recovery endotherms were found to appear in the glass transition region of PLLA, aged at 52 °C, of a particular degree of crystallinity (Xc) within a definite range. Below the lower Xc limit, only the low endotherm corresponding to the free amorphous phase was observed; above the upper Xc limit, only the high endotherm corresponding to the constrained amorphous phase was observed. Dual tan δ peaks in dynamic mechanical analysis confirmed the coexistence of the dual amorphous phases. Both lower and upper limits of the Xc range increased with an increase in isothermal crystallization temperature from the melt. Long‐term physical aging at 52 °C, which did not affect Xc, allowed the evolution of the free amorphous phase to the constrained amorphous phase in PLLA with Xc within the definite range. The effects of physical aging at various temperatures on the enthalpy recovery endotherms were also investigated. Copyright © 2011 Society of Chemical Industry  相似文献   

16.
The poly(2‐methacryloyloxyethyl phosphorylcholine)‐block‐poly(D ,L ‐lactide) (PMPC‐b‐PLA) was specially designed to develop biomimetic giant vesicles (GVs) and giant large compound vesicles via a simple spontaneous assemble in aqueous solution. The weight fraction of the hydrophilic PMPC block (fPC) was proved to play an important role in the size and morphology control of the self‐assembled aggregates. The GVs with controlled micrometer size and biomimetic PMPC corona have great potential as artificial cell models. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

17.
The effects of different silica loadings and elastomeric content on interfacial properties, morphology and mechanical properties of polypropylene/silica 96/4 composites modified with 5, 10, 15, and 20 vol % of poly(styrene‐b‐ethylene‐co‐butylene‐b‐styrene) SEBS added to total composite volume were investigated. Four silica fillers differing in size (nano‐ vs. micro‐) and in surface properties (untreated vs. treated) were chosen as fillers. Elastomer SEBS was added as impact modifier and compatibilizer at the same time. The morphology of ternary polymer composites revealed by light and scanning electron microscopies was compared with morphology predicted models based on interfacial properties. The results indicated that general morphology of composite systems was determined primarily by interfacial properties, whereas the spherulitic morphology of polypropylene matrix was a result of two competitive effects: nucleation effect of filler and solidification effect of elastomer. Tensile and impact strength properties were mainly influenced by combined competetive effects of stiff filler and tough SEBS elastomer. Spherulitic morphology of polypropylene matrix might affect some mechanical properties additionally. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41486.  相似文献   

18.
The damping properties in blends of poly(styrene‐b‐isoprene‐b‐styrene) (SIS) and hydrogenated aromatic hydrocarbon (C9) resin were investigated by dynamic mechanical analysis. SIS exhibited two independent peaks of loss factor (tan δ) corresponding to the glass transition of polyisoprene (PI) and polystyrene (PS) segments, respectively. The addition of hydrogenated C9 resin had a positive impact on the damping of SIS. With the increasing softening point and content of the resin, the main tan δ peak shifted to higher temperatures and the useful damping temperature range was broadened. Addition of mica or PS was found to widen the effective damping range evidently in the high‐temperature region, especially when PS was mixed in the solid state. It was concluded that the dispersed PS domains played a role of reinforcing fillers at low temperatures and served as a polymer component with a tan δ peak due to its glass transition at the high temperature. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102:4157–4164, 2006  相似文献   

19.
Poly(butylenes terephthalate) (PBT)/SiO2 nanocomposites with uniform dispersion, strong interfacial adhesion, and improved mechanical properties have been prepared by a novel approach. Ethylene‐methyl acrylate‐glycidyl methacrylate (E‐MA‐GMA) elastomer chains were first chemically grafted onto the surface of SiO2 nanoparticles. Fourier transform infrared spectra result shows that elastomer‐modified SiO2 nanoparticles exhibit absorption at 2963–2862 cm−1 of the stretching modes of C H, which suggests the reaction between the hydroxyl groups of SiO2 surface and epoxy groups of E‐MA‐GMA. And the binding energy of Si2p and O1s of the elastomer‐modified SiO2 shifts to lower binding energy, which further confirms the formation of Si O C bonds. This surface treatment allows SiO2 nanoparticles homogeneously dispersing in PBT matrix. The morphology with loose aggregates contains networked SiO2 particles with an interparticle distance ranging from 0 to 30 nm. As a result, the storage modulus and the tensile properties of PBT/E‐MA‐GMA‐SiO2 nanocomposites are higher than those of pure PBT and PBT with untreated SiO2. The incorporation of E‐MA‐GMA‐modified SiO2 particles increases the tensile strength and modulus to 58.4MPa and 2661MPa respectively, which is 8% and 16% higher than those of pure PBT. POLYM. COMPOS., 2009. © 2009 Society of Plastics Engineers  相似文献   

20.
Polylactide‐block‐poly(butylene adipate) poly(ester‐urethane) (PLAEU) thermoplastic elastomer was obtained by melt chain extending reaction with polylactide‐block‐poly(butylene adipate)‐block‐polylactide (PBLA) and hexamethylene diisocyanate (HDI). PBLA was previously prepared with L ‐lactide and poly(butylene adipate) diol (PBA diol). Experimental parameters including feed ratio, polymerization temperature, and time were optimized. The weight average molecular weight (Mw) of PLAEU surpassed 105 g/mol. In contrast to corresponding PBLA, the crystallinity and melt temperature (Tm) of PLAEU decreased, whereas its glass transition (Tg) shifted to high temperature due to the “pseudoextension” structure of polylactide (PLA) block. Additionally, the crystallinity and Tm of PLAEU were subject to crystallization method and molecular weight. The tensile strength of PLAEU varied from 6.61 to 24.41 MPa and elongation from 190% to 780%. Therefore, the mechanical properties of PLAEU can be regulated by altering the length ratio of PLA to PBA block. The high elasticity of PLAEU can be explained with phase separation mechanism. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号