首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The mechanical, structural, and thermal properties of injection‐molded composites of granular cornstarch, poly(D ,L ‐lactic acid) (PDLLA), and poly(hydroxy ester ether) (PHEE) were investigated. These composites had high tensile strengths, ranging from 17 to 66 MPa, at starch loadings of 0–70 wt %. Scanning electron microscopy micrographs of fracture specimens revealed good adhesion between the starch granule and the polymer matrix, as evidenced by broken starch granules. The adhesion of the starch granules to the polymer matrix was the greatest when the matrix PDLLA/PHEE ratios ranged from zero to unity. At a PDLLA/PHEE ratio of less than unity, as the starch content increased in the composites, there was an increase in the tensile strength and modulus, with a concurrent decrease in elongation. The effects of starch on the mechanical properties of starch/PDLLA composites showed that as the starch content of the composite increased, the tensile strength and elongation to break decreased, whereas Young's modulus increased. In contrast, the tensile strength of starch/PHEE composites increased with increasing starch content. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1775–1786, 2003  相似文献   

2.
《国际聚合物材料杂志》2012,61(2-3):351-366
Abstract

Sago starch filled linear low density polyethylene (LLDPE) composites, have been prepared by melt mixing of the granular starch and LLDPE in a HAAKE internal mixer. The tensile, water absorption and enzymatic degradation properties of the composites have been determined. Incorporation of sago starch into LLDPE led to decrease in tensile strength and elongation at break of the composites. Up to 15 wt.% of sago starch could be added to LLDPE without adverse effects on the tensile properties. The water uptake increased with immersion time and the rate of absorption is strongly controlled by the immersion temperatures. Dramatic reduction in tensile properties were observed in the composites that were immersed in water at 90[ddot]C. The recovery of the tensile strength and elongation at break upon redrying is about 37.5 and 1.6% respectively. The permanent damage to the composites was attributed to severe hydrolysis of the starch particles. The enzymatic degradation study using oc-amylase revealed that both tensile strength and elongation at break reduced with time of treatment. Mode of failures of both LLDPE matrix and its sago starch filled composites, assessed by fracto-graphic analysis in a scanning electron microscope (SEM) are discussed.  相似文献   

3.
To determine the possibility of using starch as biodegradable filler in the thermoplastic polymer matrix, starch‐filled polypropylene (PP) composites were prepared by extrusion of PP resin with 5, 10, 15, and 20 wt % of potato starch in corotating twin‐screw extruder. The extruded strands were cut into pellets and injection molded to make test specimens. These specimens were tested for physicomechanical properties such as tensile and flexural properties, Izod impact strength, density, and water absorption. These PP composites were further characterized by melt flow index (MFI), vicat softening point (VSP), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA) techniques. It was found that, with increase in starch content, tensile modulus, flexural strength, and flexural modulus of the PP composites increased along with the increase in moisture, water absorption, and density, while retaining the VSP; but, tensile strength and elongation, impact strength, hardness, and MFI of the PP composites also decreased. DSC analysis of the PP composite revealed the reduction in melting temperature, heat of fusion, and percentage of crystallization of PP with increase in starch content. Similarly, TGA traces display enhanced thermal degradability for PP as starch content increases. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

4.
Bisphenol‐C‐epoxy‐toluene diisocyanate polyurethane (PEBCT) has been synthesized and used for the fabrication of jute, jute–rice husk (JRH), and jute–wheat husk (JWH) composites. The composites have been fabricated by hand lay‐up technique under a hydraulic pressure of 30.4 MPa at 135°C for 2.5 h. PEBCT‐J, PEBCT‐JRH, and PEBCT‐JWH possess respectively, tensile strength of 37.4, 9.5, and 14.7 MPa, and flexural strength of 39.6, 12.9, and 21.3 MPa, electric strength of 1.3, 1.8, and 1.9 kV/mm and volume resistivity of 1.40 × 1013, 1.84 × 1013, and 1.91 × 1013 ohm cm. Tensile strength and flexural strength have decreased, while electric strength and volume resistivity are improved upon hybridization. PEBCT‐JWH has better interfacial bond strength and stiffness as compared to PEBCT‐JRH. Moisture uptake behavior of PEBCT‐J in water, 10% HCl and 10% NaCl at room temperature is quite different. Equilibrium moisture content of PEBCT‐J in 10% NaCl (5.5%) is almost half of those in water (11.3%) and 10% HCl (13.6%) environments. Equilibrium time for saline environment is also comparatively low. Equilibrium moisture uptake in boiling water has increased 1.84 times, while equilibrium time has decreased 15.3 times. The composites may be useful for low load bearing in construction industries and for marine applications. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

5.
Moisture diffusion in polyamide 6,6 (PA66) and its short glass fiber‐reinforced composites has a great influence on their mechanical properties and service lives under hydrothermal environments. Hence, the moisture diffusion in neat PA66 and its composites was studied comprehensively in this study with the general Fickian model. To systematically investigate the effects of the fiber content, humidity, temperature, and humidity–temperature coupling effect on the diffusion coefficient and equilibrium concentration, gravimetric experiments for the PA66 composites were carried out under different hydrothermal conditions. The results show that the equilibrium moisture concentration depended on the relative humidity and fiber content but only depended weakly on temperature. The diffusion velocity was affected by the three aforementioned factors with different trends. The analysis of variance demonstrated that the humidity–temperature coupling effect played an important role in the diffusion process. The regression analysis gave the corresponding quadratic regression equations. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42369.  相似文献   

6.
The micromechanical properties of injection‐molded starch–wood particle composites were investigated as a function of particle content and humidity conditions. The composite materials were characterized by scanning electron microscopy and X‐ray diffraction methods. The microhardness of the composites was shown to increase notably with the concentration of the wood particles. In addition, creep behavior under the indenter and temperature dependence were evaluated in terms of the independent contribution of the starch matrix and the wood microparticles to the hardness value. The influence of drying time on the density and weight uptake of the injection‐molded composites was highlighted. The results revealed the role of the mechanism of water evaporation, showing that the dependence of water uptake and temperature was greater for the starch–wood composites than for the pure starch sample. Experiments performed during the drying process at 70°C indicated that the wood in the starch composites did not prevent water loss from the samples. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4893–4899, 2006  相似文献   

7.
Composites of wood in a thermoplastic matrix (wood–plastic composites) are considered a low maintenance solution to using wood in outdoor applications. Knowledge of moisture uptake and transport properties would be useful in estimating moisture‐related effects such as fungal attack and loss of mechanical strength. Our objectives were to determine how material parameters and their interactions affect the moisture uptake and transport properties of injection‐molded composites of wood‐flour and polypropylene and to compare two different methods of measuring moisture uptake and transport. A two‐level, full‐factorial design was used to investigate the effects and interactions of wood‐flour content, wood‐flour particle size, coupling agent, and surface removal on moisture uptake and transport of the composites. Sorption and diffusion experiments were performed at 20°C and 65 or 85% relative humidity as well as in water, and diffusion coefficients were determined. The wood‐flour content had the largest influence of all parameters on moisture uptake and transport properties. Many significant interactions between the variables were also found. The interaction between wood‐flour content and surface treatment was often the largest. The diffusion coefficients derived from the diffusion experiments were different from those derived from the sorption experiments, suggesting that different mechanisms occur. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 752–763, 2007  相似文献   

8.
Ecological concern on accumulation of neutraceutical industrial waste material and the demands for newer composite materials have promoted extensive research on utilizing industrial wastes materials. Therefore, in the present study finely powdered ginger spent (GS), filled polyurethane (PU) green composites with varying amount viz., 0, 2.5, 5, 7.5, and 10 wt % of GS have been fabricated. The prepared PU/GS green composites have been characterized for their mechanical properties, density and void content. Interaction between filler and matrix has been confirmed from Fourier transform infrared spectroscopy studies. Moisture absorption and desorption studies have been performed at different relative humidity (RH). The moisture absorption and desorption studies, shows that as the hydrophilic GS content increases in the matrix the RH also increases. Water uptake behavior of PU/GS were measured in different chemical environments such as 5% sodium chloride solution, cold water at different temperature and in hydrochloric acid solution. The water uptake values increases as increase in GS concentration. Equilibrium water content, diffusivity and equilibrium time taken for all PU/GS composites have been investigated. Biodegradation studies reveals that as the GS content increases the weight loss also increases. Thermal properties have been performed using differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA). From DSC and DMA thermograms it is revealed that increase in Tg with increase in GS content. RH and contact angle measurement have been performed to understand the hydrophilic nature of the prepared composite. The morphological behavior of composites has been studied using scanning electron microscopy. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41614.  相似文献   

9.
The effects of long term exposure to dry and humid environments on carbon-epoxy and graphite-epoxy composites have been studied. Filament wound Naval Ordnance Laboratory rings were fabricated in 1965 and were placed in dry, distilled water and sea water for 11 years. Moisture desorption tests were conducted in order to determine the water content of specimens exposed to the water environments, The effect of the history on moisture absorption characteristics was investigated by re-exposure of partially and completely dried specimens to two different environments: distilled water at 60°C and 98% relative humidity at 60°C. The weight gain was measured and diffusion coefficients were calculated. Horizontal shear tests and flexural tests were performed on “wet” specimens (current properties) and on partially and completely dried specimens (residual properties). The shear strength of the carbon-epoxy composites is degraded by the exposure while that of the graphite-epoxy composite is slightly increased. The composite flexural strengths are not degraded by the exposure. These results are discussed in terms of failure modes.  相似文献   

10.
Sago starch was chemically modified through esterification using 2-dodecen-1-yl succinic anhydride (DSA) and propionic anhydride (PA) and three different solvents: [N,N dimethylformamide (DMF), triethylamine (TEA), and toluene (TOU)]. The effect of reaction times and temperatures on the modification was investigated. Evidence of anhydride modification was established by the weight percent gain (WPG) and was further confirmed by FTIR. The DSA–DMF and PA–DMF system, when subjected to the reaction condition of 120°C for 5 h, resulted in the highest WPG. Starch modified with 2-dodecen-1-yl succinic anhydride (MS) and propionic anhydride (MS2) was employed in preparation of composites. Samples of composites containing blends of MS/LLDPE and MS2/LLDPE with four different loadings of fillers (10, 25, 40 and 50% based on composite weight) were prepared. With unmodified ST/LLDPE, as the starch content increased, tensile modulus and water absorption increased—but tensile strength and elongation at break showed the opposite effect. With modification, the MS/LLDPE and MS2/LLDPE blends showed improved mechanical and water absorption properties as compared to ST/LLDPE.  相似文献   

11.
采用玻璃微珠(GB)改性聚丙烯(PP)和线性低密度聚乙烯(LLDPE),对玻璃微珠的用量、粒径和复合材料加工方法对材料的力学性能的影响进行了比较研究。结果表明:随着GB用量的增加,单、双螺杆挤出GB/PP复合材料的拉伸模量、弯曲强度和弯曲模量均呈线性增长的趋势,而屈服强度则有小幅下降;断裂应变在低含量时有所提高,然后迅速下降;单双螺杆挤出材料的冲击强度均有所提高,并在一定范围内随GB用量的提高而增大,且单螺杆挤出材料的冲击强度略高于双螺杆挤出材料。而GB/LLDPE中,随着GB用量的增加,单螺杆挤出复合材料的拉伸模量、弯曲模量均呈线性增长趋势,而屈服强度和弯曲强度在含量较高时略有上升;双螺杆挤出复合材料的拉伸模量、屈服应力、弯曲强度和弯曲模量均呈线性增长的趋势,两者的断裂应变都有所降低,但没有严重劣化LLDPE复合材料的冲击特性。GB的粒径对两种复合材料的力学性能影响不大,但对GB/PP复合材料的韧性有较大影响。单、双螺杆挤出GB/PP复合材料的冲击强度在一定范围内较纯料有一定提高;同样的,双螺杆挤出复合材料的冲击强度低于单螺杆挤出材料。  相似文献   

12.
The hygroscopic behavior of sandwich structures composed of E‐glass/polyester face sheets bonded to a PVC foam core exposed to 95% relative humidity and immersed in sea‐water is examined herein. Moisture uptake was monitored for 11 months yielding absorption curves for samples of polyester resin, laminated composites, PVC foam core, and a sandwich structure. The coefficients of diffusion and moisture saturation values extracted from the curves are significantly greater for the water immersed condition than for the exposed to elevated moisture one, and point to the foam core as the most absorbing material in the sandwich structure. The measured absorption curves are compared to a diffusion model which employs the calculated coefficient of diffusion, showing good agreement. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers  相似文献   

13.
Composites of poly(3‐hydroxybutyrate), P(3HB), and starch were prepared by solution casting technique. To improve adhesion of starch to P(3HB), stearic acid was added as a compatibilizer and glycerol as a plasticizer. The water resistance, mechanical, and biodegradable properties of the P(3HB)/starch composites were studied. Diffusion and penetration coefficients of water increased with increasing starch content in the composites. The results showed that the elastic modulus and strain at rupture of the P(3HB)/starch composites were enhanced by increasing starch content upto 10 wt % and the tensile strength increased from 21.2 to 93.9 MPa. The presence of starch content higher than 10 wt % had an adverse effect on the mechanical properties of the investigated composites. The biodegradation rate using Actinomycetes increased proportionally to the starch content in the composite and accelerated in a culture medium of pH ≈ 7.0 at 30°C. Enzymatic degradation experiments showed that lipase produced by Streptomyces albidoflavus didnot degrade P(3HB)/starch composites. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

14.
Jute fabrics (50%)-reinforced linear low density polyethylene (LLDPE) composite was prepared by compression molding and mechanical properties were studied. Gelatin fiber (2%–10%) was incorporated into the jute fabrics-based composites and their mechanical properties were investigated and compared with the control composite. It was found that with the increased of gelatin fiber content in the jute fabrics-based composites, the mechanical properties were found to be decreased, but water uptake and degradation properties were increased significantly. The composite containing 10% gelatin fiber lost 30.2% of its weight, 56.4% TS, 41.8% BS, 26% TM and 25.5% BM after 24 weeks in soil medium.  相似文献   

15.
This research reports the influence of the mechanical properties of thermoplastic polyurethane (TPU) as a function of wood filler percentage. Wood flour was mixed with two different chemically based TPUs. Also, moisture content during compounding process as well as the origin of moisture (wood or TPU) were studied. All experimental designs and statistical analysis were done with the software Design Expert Version 10. Composite preparation took place in a multi‐stage process. The results showed that 70% wood filler can be incorporated in the composite manufacture. The properties of the composite were mainly influenced by the proportion of wood and TPU. Wood flour increased the density, hardness, water absorption, and tensile modulus with a decrease in impact resistance and abrasion resistance of the composite. Tensile strength exhibited a decrease up to ~35% wood content, but an increase with further addition of wood. Moisture content had only a minor influence on the mechanical and water absorption properties despite the noted severe moisture sensitivity of TPU, which usually leads to decline in mechanical properties. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46344.  相似文献   

16.
Biodegradable composites from starch and hydrophobic polymer usually show poor compatibility. A novel p‐phthaloyl chloride‐based prepolymer (PCP) compatibilizer based on p‐phthaloyl chloride and polycaprolactone (PCL) diol (2000) was synthesized successfully and the chemical structure was characterized by Fourier transform infrared spectra and 1H nuclear magnetic resonance (NMR). The PCP compatiblizer was mixed with starch granules to form a coating layer, and then the coated starch granules were melt‐compounded with PCL plastic to prepare compatible starch‐PCL composites with enhanced properties. The structural, mechanical, thermal properties, and water absorption of the composites were then investigated. It was found that the composites containing the PCP compatibilizer showed better interfacial interaction and compatibility between starch and PCL domains compared to the pure starch‐PCL composite, which led to the improved mechanical properties of the composites. The results were attributed to the ester linkage between the PCP compatibilizer and starch as well as the strong physical crosslinking between the PCP compatibilizer and PCL plastic through PCL‐PCL crystallinity. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45400.  相似文献   

17.
In this work, multiwalled carbon nanotubes (MWCNTs), as reinforcing agent, were blended with linear low‐density polyethylene (LLDPE), then molded by hot compression molding to prepare LLDPE/MWCNTs composites. Tensile tests indicate that the strength, Young's modulus, and toughness are all improved for LLDPE/MWCNTs composites containing 1 and 3 wt % MWCNTs. Compared with LLDPE, the Young's modulus of LLDPE/MWCNTs composites rises from 144.8 to 270.8 MPa at 1 wt % MWCNTs content. At the same time, increases of 18.5% in tensile strength and 16.6% in yield strength are achieved. Additionally, its toughness is enhanced by 26.7% than that of LLDPE. Microstructure characterizations, including differential scanning calorimetry, X‐ray diffraction, and scanning electron microscopy were performed to investigate the variations of microstructure and further to establish the relationship between microstructure and mechanical properties. Homogeneous dispersion of MWCNTs, network formation, and development of an oriented nanohybrid shish‐kebab structure contribute to the enhanced strength and toughness. The increased crystallinity is beneficial to the reinforcement and increased modulus. Additionally, the thermal stability of the LLDPE/MWCNTs composites is enhanced as well. This work suggests a promising routine to optimize polymer/MWCNTs composites by tailoring the structural development. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45525.  相似文献   

18.
The effect of the filler volume fraction on the tensile behavior of injection‐molded rice husk‐filled polypropylene (RH–PP) composites was studied. Hygrothermal aging behavior was also investigated by immersing the specimens in distilled water at 30 and 90°C. The kinetics of moisture absorption was studied from the amount of water uptake by specimens at regular interval times. It was found that the diffusion coefficient and the maximum moisture content are dependent on the filler volume fraction and the immersion temperatures. Incorporation of RH into the PP matrix has led to a significant improvement in the tensile modulus and a moderate improvement in the tensile strength. Elongation at break and energy at break, on the other hand, decreased drastically with the incorporation of the RH filler. The extent of deterioration incurred by hygrothermal aging was dependent on the immersion temperature. Both the tensile strength and tensile modulus deteriorated as a result of the combined effect of thermal aging and moisture attack. Furthermore, the tensile properties were not recovered upon redrying of the specimens. Scanning electron microscopy was used to investigate the mode of failure of the RH–PP composites. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 742–753, 2001  相似文献   

19.
两性淀粉的取代度与吸湿保湿性能关系的研究   总被引:3,自引:0,他引:3  
以淀粉为母体,3-氯-2-羟丙基三甲基氯化铵和氯乙酸为改性剂,通过清洁的半干法工艺合成出不同羧甲基取代度高的水溶性两性淀粉,并对其吸湿、保湿性能进行研究。结果表明,两性淀粉的吸湿、保湿性能均随着羧甲基取代度的增加而增强。当RH为81%,阴离子取代度大于0.08时,两性淀粉的吸湿性与甘油相当,而保湿性在RH81%和RH38%下均优于甘油;两性淀粉的吸湿速率随着羧甲基阴离子含量增加而提高。初步探讨了两性淀粉的吸湿动力学,水分子在两性淀粉中的扩散属于non-Fickian类型。  相似文献   

20.
Thermoplastic composites based on a commercial acrylic matrix widely used in the field of art protection and restoration (Paraloid B72) and various concentrations (up to 30 wt %) of microcrystalline cellulose powder (MCC) were prepared by melt‐compounding and compression molding. The mechanical behavior of the resulting materials conditioned at a temperature of 23°C and a relative humidity level of 55% was compared to that of the corresponding dried materials. Even though the moisture absorption of the filler was lower than the neat matrix, the maximum moisture content increased with the MCC amount, probably due to the preferential water diffusion path through the microvoids and/or the filler‐matrix interface. Although the increase of moisture content for filled samples, DMTA analysis evidenced a stabilization upon MCC introduction, with an increase of the storage modulus and a decrease of the thermal expansion coefficient proportional to the filler loading. A similar trend was displayed by the corresponding dried materials. The tensile elastic modulus and the ultimate properties such as the stress at break and the tensile energy to break (TEB) of conditioned samples increased proportionally to the filler amount. On the contrary, the failure properties of dried composites were negatively affected by the presence of the microcellulose. It is worthwhile to report that a significant improvement of the creep stability was induced by MCC introduction both for dried and conditioned samples. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40741.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号