首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Binary blends of the sulfonated poly(ether ether ketone) (SPEEK)–poly(ether imide) (PEI) and SPEEK–polycarbonate (PC), and ternary blends of the SPEEK–PEI–PC, were investigated by differential scanning calorimetry. SPEEK was obtained by sulfonation of poly(ether ether ketone) using 95% sulfuric acid. From the thermal analysis of the SPEEK–PEI blends, single glass transition temperature (Tg) was observed at all the blend composition. For the SPEEK–PC blends, double Tgs were observed. From the results of thermal analysis, it is suggested that the SPEEK–PEI blends are miscible and the SPEEK–PC blends are immiscible. Polymer–polymer interaction parameter (χ12) of the SPEEK–PEI blends was calculated from the modified Lu and Weiss equation, and found to range from −0.011 to −0.825 with the blend composition. For the SPEEK–PC blends, the χ12 values were calculated from the modified Flory–Huggins equation, and found to range from 0.191 to 0.272 with the blend composition. For the SPEEK–PEI–PC ternary blends, phase separation regions that showed two Tgs were found to be consistent with the spinodal curves calculated from the χ12 values of the three binary blends. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 2488–2494, 2000  相似文献   

2.
The thermal properties of blends of poly(ether ether ketone) (PEEK) and poly(ether imide) (PEI) prepared by screw extrusion were investigated by differential scanning calorimetry. From the thermal analysis of amorphous PEEK–PEI blends which were obtained by quenching in liquid nitrogen, a single glass transition temperature (Tg) and negative excess heat capacities of mixing were observed with the blend composition. These results indicate that there is a favorable interaction between the PEEK and PEI in the blends and that there is miscibility between the two components. From the Lu and Weiss equation and a modified equation from this work, the polymer–polymer interaction parameter (χ12) of the amorphous PEEK–PEI blends was calculated and found to range from −0.058 to −0.196 for the extruded blends with the compositions. The χ12 values calculated from this work appear to be lower than the χ12 values calculated from the Lu and Weiss equation. The χ12 values calculated from the Tg method both ways decreased with increase of the PEI weight fraction. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 733–739, 1999  相似文献   

3.
The effect of poly(D ,L ‐lactide‐copara‐dioxanone) (PLADO) as the compatibilizer on the properties of the blend of poly(para‐dioxanone) (PPDO) and poly(D ,L ‐lactide) (PDLLA) has been investigated. The 80/20 PPDO/PDLLA blends containing from 1% to 10% of random copolymer PLADO were prepared by solution coprecipitation. The PLADO component played a very important role in determining morphology, thermal, mechanical, and hydrophilic properties of the blends. Addition of PLADO into the blends could enhance the compatibility between dispersed PDLLA phase and PPDO matrix; the boundary between the two phases became unclear and even the smallest holes were not detected. On the other hand, the position of the Tg was composition dependent; when 5% PLADO was added into blend, the Tg distance between PPDO and PDLLA was shortened. The blends with various contents of compatibilizer had better mechanical properties compared with simple PPDO/PDLLA binary polymer blend, and such characteristics further improved as adding 5% random copolymers. The maximum observed tensile strength was 29.05 MPa for the compatibilized PPDO/PDLLA blend with 5% PLADO, whereas tensile strength of the uncompatibilized PPDO/PDLLA blend was 14.03 MPa, which was the lowest tensile strength. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

4.
Isotactic, atactic, and syndiotactic poly(methyl methacrylates) (PMMAs) (designated as iPMMA, aPMMA, and sPMMA) with approximately the same molecular weight were mixed separately with poly(styrene‐co‐acrylonitrile) (abbreviated as PSAN) containing 25 wt % of acrylonitrile in tetrahydrofuran to make three polymer blend systems. Differential scanning calorimetry (DSC) was used to study the miscibility of these blends. The results showed that the tacticity of PMMA has a definite impact on its miscibility with PSAN. The aPMMA/PSAN and sPMMA/PSAN blends were found to be miscible because all the prepared films were transparent and showed composition dependent glass transition temperatures (Tgs). The glass transition temperatures of the two miscible blends were fitted well by the Fox equation, and no broadening of the glass transition regions was observed. The iPMMA/PSAN blends were found to be immiscible, because most of the cast films were translucent and had two glass transition temperatures. Through the use of a simple binary interaction model, the following comments can be drawn. The isotactic MMA segments seemed to interact differently with styrene and with acrylonitrile segments from atactic or syndiotactic MMA segments. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 2894–2899, 1999  相似文献   

5.
Atactic poly(methylmethacrylate), aPMMA, was blended with poly(3‐D(−)hydroxybutyrate), PHB, up to a maximum composition of 25% of polyester, at 190°C in a Brabender‐like apparatus. The resulting blends quenched from the melt to room temperature were completely amorphous, and exhibited a single glass transition using DSC and DMTA, indicating miscibility of the components for this time–temperature history. Tensile experiments showed that at room temperature the 10/90 and 20/80 PHB/aPMMA blends exhibited higher values of strain at break, and slight decreases of the modulus and stress at break compared to neat aPMMA. The tensile energy at break was almost twice that of neat aPMMA. Tensile tests were also performed at 80°C, at which point the 25/75 and 20/80 PHB/aPMMA blends are above Tg, while the 10/90 and neat aPMMA are below Tg. The stress–strain curves obtained were functions of the physical state of the amorphous phase, and also depended on the difference between the test temperatures and Tg. In particular, comparing the neat aPMMA and the blends, decreases of the modulus and stress at break and a respectable increase in the strain at break were observed in the latter. Finally, the results were commented considering the thermal degradation of PHB in the melt during the blend preparation. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 746–753, 2000  相似文献   

6.
A. Eshuis  E. Roerdink  G. Challa 《Polymer》1982,23(5):735-739
Multiple melting phenomena have been studied in blends of poly(vinylidene fluoride) (PVF2) with low molar mass isotactic poly(ethyl methacrylate) (it-PEMA). In all blends, as well as in pure PVF2, a transition (T1) was observed prior to the main melting point (T2). T1 is probably connected with the melting of secondarily-crystallized material. In addition to this, a high temperature melting endotherm (T3) was observed, which could be ascribed completely to recrystallization of PVF2. The highest transition (T4) was caused by melting of the σ form of PVF2. From Hoffman-Weeks plots—T2 vs. crystallization temperature, Tc — it could be concluded that no thermody amic depression of the melting point of PVF2 occurred in the blends. The stabilities of PVF2 crystallites in the various blends were derived from the slopes of Hoffman-Weeks plots and were in good agreement with lamellar thicknesses found from SAXS measurements.  相似文献   

7.
Miscible polymer blends based on various ratios of poly(vinyl acetate) (PVAc) and poly(methyl methacrylate) (PMMA) were prepared in film form by the solution casting technique using benzene as a common solvent. The thermal decomposition behavior of these blends and their individual homopolymers before and after γ‐irradiation at various doses (50–250 kGy) was investigated. The thermogravimetric analysis technique was utilized to determine the temperatures at which the maximum value of the rate of reaction (Tmax) occurs and the kinetic parameters of the thermal decomposition. The rate of reaction curves of the individual homopolymers or their blends before or after γ‐ irradiation displayed similar trends in which the Tmax corresponding to all polymers was found to exist in the same position but with different values. These findings and the visual observations of the blend solutions and the transparency of the films gave support to the complete miscibility of these blends. Three transitions were observed along the reaction rate versus temperature curves; the first was around 100–200°C with no defined Tmax, which may arise from the evaporation of the solvent. The second Tmax was in the 340–380°C range, which depended on the polymer blend and the γ‐irradiation condition. A third transition was seen in the rate of reaction curves only for pure PVAc and its blends with PMMA with ratios up to 50%, regardless of γ‐ irradiation. We concluded that γ‐irradiation improved the thermal stability of PVAc/PMMA blends, even though the PMMA polymer was degradable by γ irradiation. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1773–1780, 2006  相似文献   

8.
The miscibility of poly(3‐hydroxyvalerate) (PHV)/poly(p‐vinyl phenol) (PVPh) blends has been studied by differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) spectroscopy. The blends are miscible as shown by the existence of a single glass transition temperature (Tg) and a depression of the equilibrium melting temperature of PHV in each blend. The interaction parameter was found to be −1.2 based on the analysis of melting point depression data using the Nishi–Wang equation. Hydrogen‐bonding interactions exist between the carbonyl groups of PHV and the hydroxyl groups of PVPh as evidenced by FTIR spectra. The crystallization of PHV is significantly hindered by the addition of PVPh. The addition of 50 wt % PVPh can totally prevent PHV from cold crystallization. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 383–388, 1999  相似文献   

9.
A thermal analysis study of blends of semicrystalline poly(vinyl alcohol) (PVA) with a pharmaceutical substance, buflomedil pyridoxal phosphate (BPP) is presented. Temperature‐modulated DSC (TMDSC) was used to determine the Tg as well as the crystallinity of blends with various polymer to drug ratios, for different annealing procedures. Positive deviations from a simple expression for the composition dependence of the glass transition of the blend were found. This result, together with the increased thermal stability of PVA–BPP blends, evidenced by TGA analysis, indicates the existence of specific interactions between the polar groups of the two components. The incorporation of dispersed BPP in the PVA matrix results in a composition‐dependent lowering of the polymer's Tm and degree of crystallinity. In addition, we found that, while melting of pure PVA is predominantly reversing, its melting in the blends acquires an increasingly higher nonreversing component with increasing BPP content in the blend. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 1151–1156, 2004  相似文献   

10.
Isotactic, atactic, and syndiotactic poly(methyl methacrylates) (PMMAs) (designated as iPMMA, aPMMA, and sPMMA) were mixed with poly(styrene‐cop‐hydroxystyrene) (abbreviated as PHS) containing 15 mol % of hydroxystyrene separately in 2‐butanone to make three polymer blend systems. Differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) spectroscopy were used to study the miscibility of these blends. The three polymer blends were found to be miscible, because all the prepared films were transparent and there was a single glass transition temperature (Tg) for each composition of the polymers. Tg elevation (above the additivity rule) is observed in all the three PMMA/PHS blends mainly because of hydrogen bonding. If less effective hydrogen bonding based on the FTIR evidence is assumed to infer less exothermic mixing, sPMMA may not be miscible with PHS over a broader range of conditions as iPMMA and aPMMA. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 431–440, 1999  相似文献   

11.
The miscibility of poly(1,4‐cyclohexamethylene terephthalate) (PCT) having an aliphatic cyclic segment blended with Polyarylate (PAR) was investigated by means of calorimetric measurements. It was found that all the PCT/PAR blends are miscible and show a single, composition‐dependent glass transition temperature (Tg). The Tg composition dependence has been analyzed by using the Gordon–Taylor equation and the values of Tg obtained experimentally agree quite well with those calculated theoretically by using that equation. Also, the melting point depression phenomenon that occurred in miscible polymer pairs was observed up to 40 wt % PCT content. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 1947–000, 2000  相似文献   

12.
Dynamic viscoelastic properties for miscible blends of poly(?‐caprolactone) (PCL) and poly(styrene‐co‐acrylonitrile) (SAN) were measured. It was found that the time–temperature superposition principle is applicable over the entire temperature range studied for the blends. The temperature dependency of the shift factors aT can be expressed by the Williams–Landel–Ferry equation: log aT = ?8.86(T ? Ts)/(101.6 + T ? Ts). The compositional dependency of Ts represents the Gordon–Taylor equation. The zero‐shear viscosities are found to increase concavely upward with an increase in weight fraction of SAN at constant temperature, but concavely downward at constant free volume fraction. It is concluded that the relaxation behavior of the PCL/SAN blends is similar to that of a blend consisting of homologous polymers. It is emphasized that the viscoelastic functions of the miscible blends should be compared in the iso‐free volume state. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 2037–2041, 2001  相似文献   

13.
The physical properties of poly(vinyl chloride) (PVC) and poly(N‐isopropylacrylamide) [poly(NIPAAm)] blend systems, and their corresponding graft copolymers such as PVC‐g‐NIPAAm, were investigated in this work. The compatible range for PVC–poly(NIPAAm) blend systems is less than 15 wt % poly(NIPAAm). The water absorbencies for the grafted films increase with increase in graft percentage. The water absorbencies for the blend systems increase with increase in poly(NIPAAm) content within the compatible range for the blends, but the absorbencies decrease when the amount of poly(NIPAAm) is more than the compatible range in the blend system. The tensile strengths for the graft copolymers are larger than the corresponding blends. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 170–178, 2000  相似文献   

14.
Poly(acrylic acid) (PAA) and poly(vinyl pyrrolidone) (PVP) were chosen to prepare polymer complex and blends. The complex was prepared from ethanol solution and the blends were prepared from 1-methyl-2-pyrrolidone solution. DSC results show that the Tgs of the PAA/PVP blends lie between those of the two constituent polymers, whereas Tg of the PAA/PVP complex is higher than both blends and the two constituent polymers. TGA results show that degradation temperature, Td, of PAA increases upon adding PVP in the blend, but thermal stability of the complex is higher than that of the blends as reflected by the higher Td. Both FTIR and high-resolution solid state NMR show strong hydrogen bonding between PAA and PVP by showing significant chemical shift. The T(H) measurement shows that the homogeneity scale for the blend is at ∼20 Å and that for the complex is ∼15 Å.  相似文献   

15.
Poly(ethylene glycol) (PEG) and end‐capped poly(ethylene glycol) (poly(ethylene glycol) dimethyl ether (PEGDME)) of number average molecular weight 1000 g mol?1 was melt blended with poly(ethylene terephthalate) (PET) oligomer. NMR, DSC and WAXS techniques characterized the structure and morphology of the blends. Both these samples show reduction in Tg and similar crystallization behavior. Solid‐state polymerization (SSP) was performed on these blend samples using Sb2O3 as catalyst under reduced pressure at temperatures below the melting point of the samples. Inherent viscosity data indicate that for the blend sample with PEG there is enhancement of SSP rate, while for the sample with PEGDME the SSP rate is suppressed. NMR data showed that PEG is incorporated into the PET chain, while PEGDME does not react with PET. Copyright © 2005 Society of Chemical Industry  相似文献   

16.
Blend films of poly(L ‐lactide) (PLLA) and poly(vinyl alcohol) (PVA) were obtained by evaporation of hexafluoroisopropanol solutions of both components. The component interaction, crystallization behavior, and miscibility of these blends were studied by solid‐state NMR and other conventional methods, such as Fourier transform infrared (FTIR) spectra, differential scanning calorimetry (DSC), and wide‐angle X‐ray diffraction (WAXD). The existence of two series of isolated and constant glass‐transition temperatures (Tg's) independent of the blend composition indicates that PLLA and PVA are immiscible in the amorphous region. However, the DSC data still demonstrates that some degree of compatibility related to blend composition exists in both PLLA/atactic‐PVA (a‐PVA) and PLLA/syndiotactic‐PVA (s‐PVA) blend systems. Furthermore, the formation of interpolymer hydrogen bonding in the amorphous region, which is regarded as the driving force leading to some degree of component compatibility in these immiscible systems, is confirmed by FTIR and further analyzed by 13C solid‐state NMR analyses, especially for the blends with low PLLA contents. Although the crystallization kinetics of one component (especially PVA) were affected by another component, WAXD measurement shows that these blends still possess two isolated crystalline PLLA and PVA phases other than the so‐called cocrystalline phase. 13C solid‐state NMR analysis excludes the interpolymer hydrogen bonding in the crystalline region. The mechanical properties (tensile strength and elongation at break) of blend films are consistent with the immiscible but somewhat compatible nature of these blends. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 762–772, 2001  相似文献   

17.
Isotactic, atactic, and syndiotactic poly(methyl methacrylates) (i, a, and s PMMAs) were mixed with poly(vinylidene chloride‐co‐acrylonitrile) (Saran F) separately in tetrahydrofuran to make three polymer blend systems. Differential scanning calorimetry (DSC) was used mainly to study the miscibility of these blends. iPMMA and aPMMA were found to be miscible with Saran F based on the transparency and a single glass transition temperature (Tg) of the films. However, sPMMA was immiscible with Saran F because of the observation of two Tgs and opacity in most compositions of the blend. aPMMA is known to be miscible with sPMMA. Therefore aPMMA is both miscible with Saran F and sPMMA but Saran F and sPMMA are immiscible. Preliminary results of the effect of adding of aPMMA to immiscible sPMMA and Saran F mixtures were also reported. First, binary mixtures of atactic and syndiotactic PMMAs were also prepared and confirmed to be miscible. Elevation of Tg of the aPMMA/sPMMA blend above weight average was observed probably due to stereocomplexation occurred between aPMMA and sPMMA. Then ternary blends of atactic and syndiotactic PMMAs and Saran F in the weight ratios of about 3/1/4, 2/2/4, and 1/3/4 were also measured calorimetrically. A single Tg was observed for these three compositions different from two Tgs detected in the sPMMA/Saran F (50.0/50.0, i.e., 4/4) blend. Obviously, the composition of Saran was fixed in the ternary blends. When the other half of the blends was changing from pure sPMMA to sPMMA and aPMMA mixture, the blends became miscible because of the addition of aPMMA. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 1313–1321, 2000  相似文献   

18.
Interpenetrating polymer networks (IPNs) of polydimethylsiloxane (PDMS) and poly(2‐hydroxyethyl methacrylate) (PHEMA) were prepared by sequential method. The dynamic mechanical parameters of obtained IPNs and their variations with the structural composition were evaluated. The results for the IPNs were compared with corresponding physically blended systems. The tensile properties and damping factor (tan δ) were assessed by stress–strain measurement and dynamic mechanical thermal analysis (DMTA), respectively. The glass–rubber transition temperature (Tg) was assessed by DMTA and differential scanning calorimetry (DSC). The results showed higher tensile strength and elongation at break for IPNs than those for physical blends. The shifts of Tg for that two components that make up the IPNs were greater than those for corresponding blends. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 3480–3485, 2002  相似文献   

19.
Isotactic, atactic, and syndiotactic poly(methyl methacrylates) (PMMA) (designated iPMMA, aPMMA, and sPMMA) with approximately the same molecular weight were mixed separately with poly(vinyl pyrrolidone) (PVP) primarily in chloroform to make three polymer blend systems. Differential scanning calorimetry (DSC) was used to study the miscibility of these blends. The results showed that the tacticity of PMMA has a definite impact on its miscibility with PVP. The aPMMA/PVP and sPMMA/PVP blends were found to be miscible because all the prepared films showed composition-dependent glass-transition temperatures (Tg). The glass-transition temperatures of the aPMMA/PVP blends are equal to or lower than weight average and can be qualitatively described by the Gordon–Taylor equation. The glass-transition temperatures of the other miscible blends (i.e., sPMMA/PVP blends) are mostly higher than weight average and can be approximately fitted by the simplified Kwei equation. The iPMMA/PVP blends were found to be immiscible or partially miscible based on the observation of two glass-transition temperatures. The immiscibility is probably attributable to a stronger interaction among isotactic MMA segments because its ordination and molecular packing contribute to form a rigid domain. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 3190–3197, 2001  相似文献   

20.
In this study, the structural and morphological properties of poly(methyl methacrylate)/poly(acrylonitrile‐g‐(ethylene‐co‐propylene‐co‐diene‐g‐styrene) (PMMA‐AES) blends were investigated with emphasis on the influence of the in situ polymerization conditions of methyl methacrylate. PMMA‐AES blends were obtained by in situ polymerization, varying the solvent (chloroform or toluene) and polymerization conditions: method A—no stirring and air atmosphere; method B—stirring and N2 atmosphere. The blends were characterized by infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and dynamic mechanical analysis (DMA). The results showed that the PMMA‐AES blends are immiscible and present complex morphologies. This morphology shows an elastomeric dispersed phase in a glassy matrix, with inclusion of the matrix in the elastomer domains, suggesting core shell or salami morphology. The occlusion of the glassy phase within the elastomeric domains can be due to the formation of graft copolymer and/or phase inversion during polymerization. However, this morphology is affected by the polymerization conditions (stirring and air or N2 atmosphere) and by the solvent used. The selective extraction of the blends' components and infrared spectroscopy showed that crosslinked and/or grafting reactions occur on the elastomer chains during MMA polymerization. The glass transition of the elastomer phase is influenced by morphology, crosslinking, and grafting degree and, therefore, Tg depends on the polymerization conditions. On the other hand, the behavior of Tg of the glassy phase with blend composition suggests miscibility or partial miscibility for the SAN phase of AES and PMMA. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号