首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Different characteristic surface structures such as capsules, regularly spaced droplets, and fibers are formed by electrostatic interaction between poly‐L ‐lysine (PLL) and gellan gum via polyion complex (PIC) formation. Spherical droplet PIC capsules of varying diameters form in solutions. Some dyes adsorb on the surface of the capsules, and other dyes penetrate into the capsules. The strong PIC fiber can be spinnable by gravity and by wet spinning in ethanol. This fiber possesses a counterion pairing structure and exhibits the nervation/veining pattern and hollow yarn. The tensile strength of the fiber is 27.8 kg/mm2 [1.40 g/denier (d)] and the knotting strength is 9.98 kg/mm2 (1.13 g/d). By using an organic crosslinking agent, epichlorohydrin, the tensile strength can be increased to 38.5 kg/mm2 (2.46 g/d) and the knotting strength can be increased to 12.2 kg/mm2 (1.99 g/d). The PIC fiber can be dyed by five different dyeing procedures such as direct and vat dyeings. The PLL PIC fiber is water insoluble and has potential as a new synthetic polypeptide fiber technology. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 437–446, 2001  相似文献   

2.
High tensile strength fibers of poly[(R)‐3‐hydroxybutyrate‐co‐(R)‐3‐hydroxyhexanoate] [P(3HB‐co‐3HH)], a type of microbial polyesters, were processed by one‐step and two‐step cold‐drawn method with intermediate annealing. Thermal degradation behaviors were characterized by differential scanning calorimeter and gel permeation chromatography measurements. Thermal analyses were revealed that molecular weights decreased drastically within melting time at a few minute. One‐step cold‐drawn fiber with drawing ratio of 10 showed tensile strength of 281 MPa, while tensile strength of as‐spun fiber was 78 MPa. When two‐step drawing was applied for P(3HB‐co‐3HH) fibers, the tensile strength was led to 420 MPa. Furthermore, the optimization of intermediate annealing condition leads to enhance the tensile strength at 552 MPa of P(3HB‐co‐3HH) fiber. Wide‐angel X‐ray diffraction measurements of these fibers suggest that the fibers with high tensile strength include much amount of the planer‐zigzag conformation (β‐form) as molecular conformation together with 21 helix conformation (α‐form). © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41258.  相似文献   

3.
The present study investigates the influence of different plasma treatments on the tensile characteristics of lyocell fibers and the interfacial interactions of lyocell fibers in a poly(lactic acid) matrix. For the investigations, the fibers were coated by an amine‐functional, nanoporous layer (a‐C:H:N) using a gaseous mixture of NH3:C2H4 of 1:1 and 5:3, respectively, an oxygen‐functional layer (a‐C:H:O) with CO2:C2H4 and CO2 posttreatment, or an oxygen‐functional layer (a‐C:H:O) comprising hydroxyl groups with H2O:C2H4 and H2O posttreatment. As reference, uncoated fibers and fibers coated with a crosslinked, amorphous hydrocarbon layer (a‐C:H) without functional group incorporation were investigated. While the different treatments maintained the tensile strength of the lyocell fibers, which were all in the range between 295 and 338 N/mm2, the interfacial shear strength, measured by the pull‐out test, was clearly influenced. The best improvement of the fiber/matrix adhesion was obtained by a plasma treatment with a mixture of water vapor and ethylene resulting in an interfacial shear strength of 17.8 N/mm2 in comparison to the untreated lyocell fiber with 10.3 N/mm2. Amine‐functional plasma polymers (a‐C:H:N) were also found to be suitable for adhesion‐promoting interlayers on lyocell fibers in poly(lactic acid). © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

4.
The influence of formation temperature on the ultradrawing properties of ultrahigh‐molecular‐weight polyethylene/carbon nanotube (UHMWPE/CNT) fiber specimens is investigated. Gel solutions of UHMWPE/CNT with various CNT contents were gel‐spun at the optimum concentration and temperature but were cooled at varying formation temperatures in order to improve the ultradrawing and tensile properties of the UHMWPE/CNT composite fibers. The achievable draw ratio (Dra) values of UHMWPE/CNT as‐prepared fibers reach a maximum when they are prepared with the optimum CNT content and formation temperature. The Dra value of UHMWPE/CNT as‐prepared fibers produced using the optimum CNT content and formation temperature is about 33% higher than that of UHMWPE as‐prepared fibers produced using the optimum concentration and formation temperature. The percentage crystallinity (Wc) and melting temperature (Tm) of UHMWPE/CNT as‐prepared fiber specimens increase significantly as the formation temperature increases. In contrast, Wc increases but Tm decreases significantly as the CNT content increases. Dynamic mechanical analysis of UHMWPE and UHMWPE/CNT fiber specimens exhibits particularly high α‐transition and low β‐transition, wherein the peak temperatures of α‐transition and β‐transition increase dramatically as the formation temperature increases and/or CNT content decreases. In order to understand these interesting drawing, thermal and dynamic mechanical properties of the UHMWPE and UHMWPE/CNT as‐prepared fiber specimens, birefringence, morphological and tensile studies of as‐prepared and drawn fibers were carried out. Possible mechanisms accounting for these interesting properties are proposed. Copyright © 2010 Society of Chemical Industry  相似文献   

5.
This paper traces the historical development of high temperature resistant rigid‐rod polymers. Synthesis, fiber processing, structure, properties, and applications of poly(p‐phenylene benzobisoxazole) (PBO) fibers have been discussed. After nearly 20 years of development in the United States and Japan, PBO fiber was commercialized with the trade name Zylon® in 1998. Properties of this fiber have been compared with the properties of poly(ethylene terephthalate) (PET), thermotropic polyester (Vectran®), extended chain polyethylene (Spectra®), p‐aramid (Kevlar®), m‐aramid (Nomex®), aramid copolymer (Technora®), polyimide (PBI), steel, and the experimental high compressive strength rigid‐rod polymeric fiber (PIPD, M5). PBO is currently the highest tensile modulus, highest tensile strength, and most thermally stable commercial polymeric fiber. However, PBO has low axial compressive strength and poor resistance to ultraviolet and visible radiation. The fiber also looses tensile strength in hot and humid environment. In the coming decades, further improvements in tensile strength (10–20 GPa range), compressive strength, and radiation resistance are expected in polymeric fibers. Incorporation of carbon nanotubes is expected to result in the development of next generation high performance polymeric fibers. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 100: 791–802, 2006  相似文献   

6.
Novel high‐performance copolyimide (co‐PI) fibers containing benzimidazole and benzoxazole ring in the main chain were prepared by a two‐step spinning via the poly(amic acid)s. Effects of the incorporated benzimidazole and benzoxazole units on the micro‐structure and properties of co‐PI fibers were investigated. Fourier transform infrared (FTIR) results indicated that hydrogen bonding is formed in the co‐PI fibers. The co‐PI fibers exhibited discernible crystallization peaks at 14°~15° and 23°~26° (2θ), showing crystalline‐like structure. Moreover, the packing type of benzimidazole‐imide units determined the macromolecules packing of co‐PIs. It was amazedly found that the co‐PI fibers exhibited higher tensile strength and initial modulus than those of corresponding homo‐PI fibers, reaching tensile strength of 2.2–2.6 GPa, initial modulus of 99.1–113.2 GPa. The results of dynamic mechanical analysis (DMA) indicated co‐PI2 fiber had a positive Tg deviation due to the presence of strong intermolecular hydrogen bonding between benzimidazole‐imide and benzoxazole‐imide units, which maybe lead to the effective stress transfer between benzimidazole‐imide units and benzoxazole‐imide units. In addition, the obtained PI fibers exhibited excellent thermal properties with the 10% weight loss temperatures under N2 in the range of 574–585°C. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42001.  相似文献   

7.
Composites were made from carbon fibers and gelatin using a solvent‐casting or solution‐impregnation technique. Relationships between the fiber volume fraction (Vf), glycerol (plasticizer) content, gelatin content, fiber form, and mechanical properties (tensile strength and modulus, elongation at break, and shear strength) of the composites were investigated. In long carbon fiber gelatin composite (CL/Gel), tensile strength, modulus, and shear strength increased steadily with the Vf. In the case of a short carbon fiber gelatin composite (CS/Gel), an initial improvement in tensile strength and modulus was followed by a reduction, whereas the shear strength improved with the Vf and then reached a constant value. The elongation decreased with the Vf for both composites. It is shown that CL/Gel had higher values of strength, modulus, and elongation than did CS/Gel at any Vf level. The effects of glycerol and gelatin contents on the mechanical properties of the composites were found to be much less significant as compared to the Vf. According to scanning electron microscopic observation of the fracture surfaces, the fibers were uniformly distributed in the gelatin matrix, but the interfacial adhesion between the gelatin matrix and the carbon fibers was not very good for both composites. Fiber surface modification would be necessary to further improve the mechanical properties of the two composites. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 987–993, 2000  相似文献   

8.
A novel salt‐resistant superabsorbent composite was prepared by copolymerization of partially neutralized acrylic acid, 2‐acryloylamino‐2‐methyl‐1‐propanesulfonic acid (AMPS) and attapulgite (APT). To enhance the swelling rate (SR) of the copolymer, sodium bicarbonate was used as a foaming agent in the course of copolymerization. Furthermore, for improving the properties of swollen hydrogel, such as strength, resilience and dispersion, the copolymer was surface‐crosslinked with glycerine and sodium silicate, and then the surface‐crosslinked copolymer was blended with aluminum sulfate and sodium carbonate in post treatment process. The influences of some reaction conditions, such as amount of AMPS, APT, and initiator, and neutralization degree of acrylic acid on water absorbency in 0.9 wt% NaCl aqueous solution both under atmospheric pressure (WA) and load (WAP, P ≈ 2 × 103 Pa) were investigated. In addition, the effect of them on SR was also studied. The WA and WAP of the superabsorbent composite prepared under optimal conditions in 0.9 wt% NaCl aqueous solution were 52 g·g?1 and 8 g·g?1, respectively. Besides, the SR was fast, and it could reach 0.393 mL·(g·s)?1. Moreover, the swollen hydrogel possessed excellent salt resistance, hydrogel resilience and dispersion. POLYM. ENG. SCI., 2009. © 2008 Society of Plastics Engineers  相似文献   

9.
Alginate/ N‐Succinyl‐chitosan (SCS) blend fibers, prepared by spinning their mixture solution through a viscose‐type spinneret into a coagulating bath containing aqueous CaCl2, were studied for structure and properties with the aid of infrared spectroscopy (IR) and X‐ray diffraction (XRD). The results indicated a good miscibility between alginate and SCS, because of the strong interaction from the intermolecular hydrogen bonds. The best values of the dry tensile strength and breaking elongation were obtained when SCS content was 30 wt %. The wet tensile strength decreased with the increase of SCS content, and the wet breaking elongation achieved maximum value when the SCS content was 30 wt %. Introduction of SCS in the blend fiber improved water‐retention properties of blend fiber compared to pure alginate fiber. Antibacterial fibers, obtained by treating the fibers with aqueous solution of silver nitrate, exhibited good antibacterial activity to Staphylococcus aureus. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

10.
The effects of the fiber reinforcement of a novel bioabsorbable chitin‐fiber‐reinforced poly(?‐caprolactone) (PCL) composite were improved by irradiation treatment. The tensile strength and tensile modulus of the treated specimens were enhanced with respect to those of the untreated specimens. An increase in the fiber content (Cf) resulted in an increase in this enhancement tendency until Cf was 45%. A further increase in Cf increased the tensile modulus but decreased the strength. The flexural strength and flexural modulus were increased for the irradiation‐treated specimens in the same way as the tensile test. The microstructure of the tensile fracture showed an improvement in interfacial bonding for the irradiated specimens. The glass‐transition temperature (Tg) of the composite increased with an increase in Cf for the irradiation‐treated specimens, but there was no change in Tg for the untreated specimens with various values of Cf. This indicated that, for the composites with irradiation treatment, the fiber intensively affected the molecular segmental motion of PCL and thereby enhanced the interfacial interaction between the matrices and fibers. The same slope of the storage modulus (G′) versus the loss modulus (G″) for the irradiated specimens suggested an increase in the compatibility of the composite in comparison with the decrease in the slope with increasing Cf for the untreated specimens. All this demonstrated that there was some interfacial reaction between the fiber and matrix that resulted in the presence of an interfacial phase and improved the mechanical properties of the materials. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 486–492, 2002; DOI 10.1002/app.10149  相似文献   

11.
A novel aromatic homopolyamide with benzobisoxazole units in the main chain was synthesized with 2,6‐bis(p‐aminophenyl)benzo[1,2‐d;5,4‐d′]bisoxazole and terephthaloyl chloride by low temperature solution polycondensation, the inherent viscosity of which was 1.98 dL/g. The diamine and p‐phenylendiamine with terephthaloyl chloride were used to synthesize the copolyamides. The structures of homopolyamide and copolyamides were characterized by IR spectra, elemental analysis, and wide‐angle X‐ray diffraction. Wide‐angle X‐ray diffraction measurements showed that homopolyamide and copolyamides were predominantly crystallinity. The results of thermal analysis indicated that the thermal stabilities of the copolymer increased with an increase of the molar fraction of benzobisoxazole in the copolymers. The thermal stability of the copolyamides with decomposition temperatures (at 10% weight loss) above 570°C was better than that of poly(p‐phenylene terephthalamide) (PPTA). Fibers of homopolyamide and copolyterephthalamides were spun from lyotropic liquid crystal dope in 100% H2SO4. When compared with PPTA fibers prepared under the same conditions, the tensile strengths of copolyamides fibers improved by 20–33% with tensile strengths of 1.81 GPa, tensile moduli of 76 GPa, and elongations at break of 3.8–4.1%, which indicated that copolyamides fibers had outstanding mechanical properties. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

12.
A series of free‐standing hybrid anion‐exchange membranes were prepared by blending brominated poly(2,6‐dimethyl‐1,4‐phenylene oxide) (BPPO) with poly(vinylbenzyl chloride‐co‐γ‐methacryloxypropyl trimethoxy silane) (poly(VBC‐co‐γ‐MPS)). Apart from a good compatibility between organic and inorganic phases, the hybrid membranes had a water uptake of 32.4–51.8%, tensile strength around 30 MPa, and Td temperature at 5% weight loss around 243–261°C. As compared with the membrane prepared from poly (VBC‐co‐γ‐MPS), the hybrid membranes exhibited much better flexibility, and larger ion‐exchange capacity (2.19–2.27 mmol g?1) and hydroxyl (OH?) conductivity (0.0067–0.012 S cm?1). In particular, the hybrid membranes with 60–75 wt % BPPO had the optimum water uptake, miscibility between components, and OH? conductivity, and were promising for application in fuel cells. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

13.
Boron nitride (BN) fibers were fabricated on a large scale through the melt‐drawn technique from low‐cost boric acid, NH3, and N2. Evolution of structure and properties of BN fibers during the fabrication process was studied by Fourier transform infrared (FT‐IR), X‐ray diffraction (XRD), scanning electron microscope (SEM), and X‐ray photoelectron spectroscopy (XPS). The mechanical properties of BN fibers were tested and analyzed. The results shown that both the mechanical properties and the crystallinity of BN fibers slightly increased with the temperature from 450 to 850°C, due to the combination of the fused‐B3N3. For BN fibers heat‐treated at 850 or 1000°C, the tensile strength (σR) and elastic modulus (E) were strongly increased because of the increase in crystallization of the BN phase. The meso‐hexagonal BN fibers with a diameter of 5.0 μm were fabricated at 1750°C, of which the tensile strength (σR) and elastic modulus (E) are 1200 MPa and 85 GPa, respectively. BN fibers with excellent mechanical properties and proper diameters were obtained by nitriding of green fibers during their conversion into ceramic.  相似文献   

14.
Nextel? 610 alumina fibers and alumina‐YAG (yttrium‐aluminum garnet) matrices were used to make oxide‐oxide ceramic matrix composites (CMCs) with and without monazite (LaPO4) fiber‐matrix interfaces. Twelve sequential aluminum oxychloride (AlOCl) infiltrations with 1 hour heat treatments at 1100°C and a final 1 hour heat treatment at 1200°C were used for matrix densification. This matrix processing sequence severely degraded CMC mechanical properties. CMC tensile strengths and interlaminar tensile (ILT) strengths were less than 10 MPa and 1 MPa, respectively. Axial fracture of Nextel? 610 fibers was observed after ILT testing, highlighting the extreme degradation of fiber strength. Extensive characterization was done to attempt to determine the responsible degradation mechanisms. Changes in Nextel? 610 fiber microstructure after CMC processing were characterized by optical microscopy, SEM, and extensively by TEM. In AlOCl degraded fibers, grain boundaries near the fiber surface were wetted with a glass that contained Y2O3/SiO2 or Y2O3/La2O3/P2O5/SiO2, and near‐surface pores were partially filled with Al2O3. This glass must also contain some Al2O3 and initially some chlorine. AlOCl decomposition products were predicted using the FactSage® Thermochemical code, and were characterized by mass spectrometry. Effects of AlOCl precursors on monazite coated and uncoated Nextel? 610 fibers tow and filament strength were evaluated. A mechanism for the severe degradation of the oxide‐oxide CMCs and Nextel? 610 fibers that involves subcritical crack growth promoted by release of chlorine containing species during breakdown of intergranular glasses in an anhydrous environment is proposed.  相似文献   

15.
Waste newsprint paper was collected from the local market and subjected to chemical pulping using 2 M NaOH. The fiber, after getting rid of water, was treated again using 2 M HCl solution for the same time period. The obtained newsprint microfibers (NPFs) were characterized by using scanning electron microscopy (SEM), X‐ray diffraction (XRD), and Fourier transform infrared spectra. Then the dried and grounded NPF batch was mixed with ethylene propylene diene monomer (EPDM) rubber using different concentrations ranged from 5 to 50 phr. The prepared composites were irradiated by using gamma rays at different doses from 20 to 100 kGy. The mechanical properties of prepared EPDM/NPFs composites such as tensile strength (Ts), elongation at break (Eb%), tensile modulus (M100), toughness (Tt), and crosslink density (Cd) were measured as a function of fiber contents and irradiation dose. The results indicated that the tensile strength (Ts) increases with increasing microfibers contents up to 10 phr and irradiation dose up to 40 kGy, while Eb% decreases as the fibers content and irradiation dose increase. M100 and Cd values increase with increasing fibers content up 50 phr fibers and irradiation dose up to 60 kGy. The results also concluded that the toughness values of EPDM/NPFs composites reach its maximum degree when using 10 phr NPFs concentration and 60 kGy irradiation dose. J. VINYL ADDIT. TECHNOL., 25:198–212, 2019. © 2018 Society of Plastics Engineers  相似文献   

16.
Nylon 66 microfibers were obtained by a carbon dioxide (CO2) laser‐thinning method. A laser‐thinning apparatus used to continuously prepare microfibers consisted of spools supplying and winding the fibers, a continuous‐wave CO2‐laser emitter, a system supplying the fibers, and a traverse. The diameter of the microfibers decreased as the winding speed increased, and the birefringence increased as the winding speed increased. When microfibers, obtained through the laser irradiation (at a power density of 8.0 W cm?2) of the original fiber supplied at 0.23 m min?1, were wound at 2000 m min?1, they had a diameter of 2.8 μm and a birefringence of 46 × 10?3. The draw ratio calculated from the supplying and winding speeds was 8696×. Scanning electron microscopy showed that the microfibers obtained with the laser‐thinning apparatus had smooth surfaces not roughened by laser ablation that were uniform in diameter. To study the conformational transition with winding speed, the changes in trans band at 936 cm?1 and gauche band at 1136 cm?1 were measured with a Fourier transform infrared microscope. The trans band increased as the winding speed increased, and the gauche band decreased. Young's modulus and tensile strength increased with increasing winding speed. The microfiber, which was obtained at a winding speed of 2000 m min?1, had a Young's modulus of 2.5 GPa and tensile strength of 0.6 GPa. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 802–807, 2006  相似文献   

17.
CuO‐filled aminomethylated polysulfone hybrid membranes were prepared for sulfur removal from gasoline. The as‐prepared membranes were characterized using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X‐ray diffraction (XRD). The separation performance of the hybrid membranes was evaluated by pervaporation (PV) separation of n‐heptane/thiophene binary mixture. CuO‐filling leads to a decrease in permeation flux. The sulfur‐enrichment factor increased first and then decreased with increasing CuO loading, and it is worth noting that there is a rebound in enrichment factor above 8 wt % CuO loading. Influencing factors such as nitrogen content, feed temperature, sulfur content, and various hydrocarbons on membrane PV performance were also evaluated. Permeation flux of 23.9 kg·μm·m?2·h?1 and sulfur‐enrichment factor of 3.9 can be achieved at 4 wt % CuO loading in PV of n‐heptane/thiophene binary mixture with 1500 μg·g?1 sulfur content. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 3718–3725, 2013  相似文献   

18.
A series of homopolymer polypropylenes (PPs), within a weight‐average molecular weight (Mw) range of 100–1600 kg/mol, were manufactured as dumbbell microspecimens. The effects of the molecular weight and shear‐induced crystallization on the mechanical properties and morphology were studied to gain a better understanding of the structure–property relationship. The results showed that the crystallinity decreased from 50 to 41% and the lamellar thickness increased as Mw increased. Tensile tests demonstrated that the stiffness and especially the tensile strength rose to extremely high values (Young's modulus = 2400 N/mm2, stress at 30% strain = 120 N/mm2). Furthermore, the strain hardening effect was strongly affected by the lamellar thickness and highly oriented superstructures. Dynamic mechanical analysis demonstrated that the mobility of the molecular chains depended on Mw and on the lamellar thickness. In addition, the viscoelastic properties of unannealed and annealed samples indicated further the existence of shish‐kebab structures caused by shear‐induced crystallization during injection molding. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 519–533, 2007  相似文献   

19.
Polymer processing methods generally play a crucial role in determining the development of microstructure in the fabricated product. In this study, isotactic polypropylene (iPP) melt containing 0.05 wt % β‐nucleating agent (β‐NA) was extruded via a melt flow rate indicator. The molten extrudate was stretched into a fiber upon various take‐up velocities (TVs). The microstructures of the fiber were investigated by differential scanning calorimeter, two‐dimensional wide‐angle X‐ray diffraction, and small‐angle X‐ray scattering. Also, its tensile properties (including tensile strength, modulus, elongation at break, and toughness) were measured by tensile test. Interestingly, the tensile strength (135.0 MPa) of a melt‐spun β‐nucleated iPP fiber fabricated at 400 cm/min was enhanced by 115.2%, compared with that (62.7 MPa) prepared at 100 cm/min, with a considerable increment in toughness (from 661 to 853 MJ/m3). The enhancement mechanism for tensile properties was discussed based on the microstructures. This work offers a simple approach to prepare β‐nucleated iPP fibers with excellent strength and toughness. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43454.  相似文献   

20.
Tensile behavior and impact strength of poly(butylene terephthlate) (PBT)/styrene‐ethylene‐butylene‐styrene (SEBS) copolymer blends were studied at SEBS volume fraction 0–0.38. Tensile modulus and strength decreased, whereas breaking elongation increased with SEBS content. Predictive models are used to evaluate the tensile properties. Strength properties were dependent on the crystallinity of PBT and phase adhesion. The normalized notched Izod impact strength increased with the SEBS content; at Φd = 0.38, the impact strength enhanced to five times that of PBT. Scanning electron microscopy was used to examine phase morphology. Concentration and interparticle distance of the dispersed phase influenced impact toughening. In the presence of maleic anhydride‐grafted SEBS (SEBS‐g‐MAH), the tensile modulus and strength decreased significantly, while normalized relative notched Izod impact strength enhanced to 7.5 times because of enhanced interphase adhesion. POLYM. ENG. SCI., 53:2242–2253, 2013. © 2013 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号