首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel polyimide (PI)/clay hybrid nanocomposite, designated as PI (PAAS)/CM, has been developed from the poly(amic acid) salt of triethylamine and organomontmorillonite (CM) using a mixture solution of tetrahydrofuran (THF) and methanol (MeOH). For comparison, two other PI/clay hybrids derived from poly(amic acid) and CM in THF/MeOH solution and N,N′‐dimethylacetamide (DMAc) solution, denoted as PI/CM (T/M) and PI/CM (DMAc), respectively, were also prepared. Dispersion of CM in polymer matrix, tensile properties, and thermal expansion properties of the three hybrids were investigated. Results show that PI (PAAS)/CM has the best dispersion of CM in polymer matrix, highest elongation, and lowest coefficient of thermal expansion values in all hybrids presented in this report. In addition, PI/CM (T/M) has better dispersion of CM and lower coefficient of thermal expansion value than PI/CM (DMAc). © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 289–294, 2001  相似文献   

2.
Self‐reinforcement gel‐like halloysite nanotube (g ‐HNT ) hybrids with various viscoelastic behaviors were fabricated by firstly treating with various concentrations of sodium hydroxide (NaOH ) solution and then grafting tertiary amine and ion‐exchange reacting with sulfonate anions. The morphology, composition, thermal stability and rheological behavior of the g ‐HNT hybrids were systematically characterized and analyzed using various methods. It is found that the viscoelasticity of g ‐HNT hybrids can be easily regulated by using different NaOH solution‐treated HNTs as inorganic core and temperatures. In addition, the g ‐HNT hybrids treated with medium concentration of NaOH (0.06 mol L?1) have the lowest viscosity and highest level of dispersion compared with those treated with other concentrations of NaOH solution. Due to the amphiphilic nature of g ‐HNT hybrids and their lower viscosity than HNT powder, as novel hybrid fillers, they were utilized to prepare polystyrene composites by direct melt blending for achieving simultaneous reinforcement and plasticization effects. Besides the above mentioned advantages, the thermal conductivity of polystyrene composites is also surprisingly improved by reducing the interfacial mismatch between the filler and polymer matrix. The solvent‐free and self‐reinforcement hybrids provide a convenient and green path for fabricating high‐performance polymer composites. © 2017 Society of Chemical Industry  相似文献   

3.
Nanohybrids based on UV-curable polyurethane acrylate (PU) and cloisite 20B (C-20B) have been synthesized by solution blending method using different loading levels of C-20B. The structures of PU/C-20B nanohybrids were confirmed by Fourier transform infrared spectroscopy (FTIR) while X-ray diffraction and transmission electron microscopy (TEM) showed the intercalation of PU into layer silicates. The thermal properties of PU and PU/C-20B nanohybrids were investigated by thermal gravimetric analysis (TGA) and differential scanning calorimetric (DSC). TGA tests revealed that the thermal decomposition temperature (Td10%) of the nanohybrid containing 5 wt% of C-20B increased significantly, being 61 °C higher than that of pure PU while DSC measurements indicated that the introduction of 5 wt% of clay increased the glass transition temperature from 89.7 to 101 °C. Accordingly, the mechanical and anti-water absorption properties proved also to be enhanced greatly as evidenced by nanoindentation anylsis and water absorptions data in which the nanohybrid containing 5 wt% of clay have highest elastic modulus (4.508 GPa), hardness (0.230 GPa) and lowest water absorption capacity. Thus the formations of nanohybrids manifests through the enhancement of thermal, mechanical and anti-water absorption properties as compared with neat PU due to the nanometer-sized dispersion of layered silicate in polymer matrix.  相似文献   

4.
Summary: Linear low‐density polyethylene (LLDPE)/clay nanocomposites are obtained and studied by using a zinc‐neutralized carboxylate ionomer as a compatibilizer. LLDPE‐g‐MA is used as a reference compatibilizer. Two different clays, natural montmorillonite (Closite Na+) and a chemically modified clay Closite 20A have been used. Nanocomposites are prepared by melt blending in a twin‐screw extruder using two mixing methods: two‐step mixing and one‐step mixing. The relative influence of each compatibilizer is determined by wide‐angle X‐ray diffraction structural analysis and mechanical properties. The results are analyzed in terms of the effect of the compatibilizing agent and incorporation method in the clay dispersion, and the mechanical properties of the nanocomposites. Experimental results confirm that the film samples with ionomer show a good mechanical performance only slightly below that of the samples with maleic anhydride (MA). The two‐step mixing conditions result in better dispersion and intercalation for the nanofillers than one‐step mixing. The exfoliation of clay platelets leads to an improved thermal stability of the composite. The oxygen permeability of the clay nanocomposites, using ionomer as a compatibilizer, is decreased by the addition of the clay.

TEM image of a PE/4 wt.‐% Closite 20A nanocomposite formed using ionomer.  相似文献   


5.
A precursor poly(amic acid) was obtained by solution polymerization of pyromellitic dianhydride and benzidine in N, N‐dimethylacetamide. Poly(amic acid)/Organoclay hybrids were prepared by the solution intercalation method with dodecylamine‐montmorillonite. A polyimide hybrid was obtained from poly(amic acid) hybrid by heat treatment at various temperatures. The film type polyimide hybrids showed better thermal properties than poly(amic acid) hybrids. Also, the thermal stability of the two polymer hybrids were enhanced linearly with increasing clay content from 0 to 8 wt%. Tensile properties and gas barriers of the hybrids, however, were enhanced remarkably compared to pristine polymers. Intercalations of the polymer chains in clar were examined through wide angle X‐ray diffraction (XRD) and electron microscopy (SEM and TEM). Transmission electron microscopy revealed that a partially exfoliated structure had been obtained from polyimide/organo‐clay hybrids.  相似文献   

6.
Poly(vinyl alcohol) (PVA)/saponite nanocomposites were prepared with various clay concentrations with the solution intercalation method. The intercalations of the polymer chains in the clay were examined with wide‐angle X‐ray diffraction and transmission electron microscopy. The variations of the dispersion, morphology, thermal properties, and gas permeability of the nanocomposites with clay concentrations in the range of 0–10 wt % were examined. Up to a 5 wt % clay loading, the clay particles were highly dispersed in the PVA matrix without any agglomeration of particles. However, some agglomerated structures formed in the polymer matrix above a 7 wt % clay concentration. The thermal stability of the hybrids increased linearly with increases in the clay loading up to 10 wt %. To measure the oxygen permeability and optical properties of the PVA hybrid films, the PVA hybrid solutions were coated onto both biaxially oriented polypropylene and poly(ethylene terephthalate) films, which were used as polymer substrates. The oxygen permeability values monotonically decreased with increases in the clay loading in the range of 0–10 wt %. The optical properties, such as the haze and gloss of the hybrid films when coated onto the matrix films, were nearly constant, that is, independent of the clay loading. These improvements arose because of the largely nanometer‐scale dispersion of the clay layers. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 591–596, 2006  相似文献   

7.
A modified melt blending method has been developed for preparing exfoliated nanocomposites of poly(ethylene terephthalate) with sodium‐montmorillonite (Na‐MMT) and poly(m‐xylylene adipamide) with Na‐MMT. In this novel compounding process, a Na‐MMT water solution was blended with the polymer in a twin screw extruder. This mixing process ensured that the silica nanoparticles were exfoliated in the polymer matrix through fixing the nanoparticles within the polymer matrix almost as they were in water. Transmission electron microscopy (TEM) and X‐ray diffraction were used to determine nanoparticle dispersion level. The absence of the X‐ray basal reflections in conjunction with the TEM images revealed the exfoliation of clay platelets. Differential scanning calorimetry illustrated that the nucleating abilities of montmorillonite were related to clay content and dispersion morphology. Oxygen permeation results indicated that the improved morphologies had enhanced the barrier properties of the nanocomposites. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

8.
Chitosan (CS)/montmorillonite‐K10 (MMTK‐10) clay composite films with different amounts of the clay MMTK‐10 (0.5, 1, 2.5, and 5%) were prepared using a solution‐casting method, and their properties were determined. The objective of this study is to prepare CS/clay nanocomposites and then to investigate the effects of clay content on mechanical, barrier, and thermal properties of these nanocomposites. The prepared films were characterized by Fourier transform infrared spectroscopy, X‐ray diffraction analysis, transmission electron microscopy, and scanning electron microscopy. Barrier properties (oxygen and water permeability), mechanical properties (tensile strength and elongation), and thermal behaviors (thermogravimetric analysis) were investigated and compared. The water vapor and gas permeability values of the composite films decreased significantly with increasing filler concentration. Tensile strength of the composites increased significantly with the addition of clay, and elongation at break decreased with increasing clay concentration. The tensile strength of nanocomposites is up to 34.82 MPa for 5 wt% clay content, and the tensile modulus shows a 74.63% higher value than that of neat CS. The resulting films had an opaque appearance, which depended on the amount of MMTK‐10 added. The oxygen permeability decreased with the increase in MMTK‐10. The minimum oxygen permeability (1.54 cm3/m2 day atm) was recorded for film with 5% MMTK‐10. The water permeability of the composite films decreased significantly between 13 and 22% when clay was added. The dispersed clay improves the thermal stability and enhances the hardness and elastic modulus of the matrix systematically with the increased loading of clay. POLYM. COMPOS., 33:1874–1882, 2012. © 2012 Society of Plastics Engineers  相似文献   

9.
This work explores the factors that control the dispersion of exfoliated montmorillonite (MMT) in poly(vinyl alcohol) (PVOH) during solution blending and solvent evaporation. Nanocomposite films were prepared by solution blending of aqueous PVOH solutions with dilute suspensions of fully exfoliated MMT platelets (as confirmed by AFM). Dynamic light scattering (DLS) indicates that addition of MMT suspensions to PVOH solutions results in undesired particle aggregation and thus poor MMT dispersion in cast films (as evidenced by transmission electron microscopic images and gas permeation measurements). We believe that PVOH bridging induces MMT platelet aggregation. To counteract bridging aggregation, we explore the novel idea of pretreating the MMT surface with a small amount of compatible polymer prior to solution blending with PVOH. We hypothesize that “pretreating” the MMT platelet surfaces with adsorbed polymer in dilute suspensions will protect the platelets from bridging aggregation during solution blending and solvent evaporation. MMT/PVOH composite films have been prepared using low‐molecular‐weight PVOH as the pretreatment polymer; and low‐, medium‐, and high‐molecular‐weight PVOH as the matrix polymer. A PEO‐PPO‐PEO triblock copolymer (F108 from the Pluronics® family) was also evaluated as the pretreatment polymer. DLS shows that pretreated MMT platelets are less susceptible to aggregation during blending with PVOH solutions. Results compare the crystalline structure, thermal properties, dynamic mechanical properties, gas permeability, and dissolution behavior of MMT/PVOH films incorporating untreated versus pretreated MMT. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41867.  相似文献   

10.
The aim of this work is the production of new nanocomposites from metallocene polyethylene‐octene elastomer (POE), montmorillonite and biodegradable starch by means of a melt blending method. Characterizations of clay, modified clay, POE, POE‐g‐AA, and the hybrids produced from polymer, clay, and/or starch were performed by X‐ray diffraction (XRD) spectroscopy, Fourier transform infrared (FTIR) spectrophotometer, differential scanning calorimetry (DSC), thermogravimetry analyzer (TGA), scanning electron microscope (SEM), and Instron mechanical tester. As to the results, organophilic clay can be well dispersed into acrylic acid grafted polyethylene‐octene elastomer (POE‐g‐AA) in nanoscale sizes since cetyl pyridium chloride is partially compatible with POE‐g‐AA and allows POE‐g‐AA chains to intercalate into clay layers. Based on consideration of thermal and mechanical properties, it is also found that 12 wt % of clay content is optimal for preparation of POE‐g‐AA/clay nanocomposites. The new partly biodegradable POE‐g‐AA/clay/starch hybrid could obviously improve the elongation and the tensile strength at break of the POE‐g‐AA/starch hybrid since the former can give the smaller starch phase size and nanoscale dispersion of silicate layers in the polymer matrix. The nanocomposites produced from our laboratory can provide a stable tensile strength at break when the starch content is up to 40 wt %. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 397–404, 2005  相似文献   

11.
Nanocomposite (NC) gels based on natural rubber (NR) and styrene butadiene rubber (SBR) were prepared by using a unique latex blending technique. These NC gels were prepared by first blending the water swollen unmodified montmorillonite clay (Na+‐MMT) suspension into the respective latices followed by prevulcanization to generate crosslinked nanogels. Use of water assisted fully delaminated Na+‐MMT suspension resulted in predominantly exfoliated morphology in the NC gels, as revealed by X‐ray diffraction study and transmission electron microscopy. Addition of Na+‐MMT significantly improved various physical, mechanical and thermal properties of these NC gels. For example, 6 phr of Na+‐MMT loaded NR based NC gels registered 54% and 200% increase in tensile strength and Young's modulus, respectively, compared to the unfilled NR gels. SBR based NC gels also showed similar level of improvement in mechanical properties. Mechanical properties of NC gels prepared using this route were also compared with the NC gels prepared by co‐coagulation and conventional curing technique and found to be superior. In the case of dynamic mechanical properties, NC gels showed higher glass transition temperatures along with a concomitant increase in storage moduli, compared to the unfilled gels. These Na+‐MMT reinforced NC gels also exhibited markedly improved thermal stability. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

12.
The thermal and mechanical properties and water absorption of sodium dodecyl sulfate (SDS)‐modified 11S soy protein and molded plastics made from it were studied using differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), mechanical tests, and scanning electron microscopy (SEM). The DSC results showed that both the temperature and enthalpy of thermal denaturation of modified 11S solutions decreased as the SDS concentration increased. Nonfreezing water of the modified 11S solution had a minimum value at 1.0% SDS. The ordered structure of SDS‐modified 11S protein was recovered and/or newly formed during the freeze‐drying process. Both DSC and DMA results showed that SDS was a plasticizer of 11S, and the glass transition temperature of modified 11S plastics decreased with increasing SDS concentration. Both the tensile strength and elongation of modified 11S plastics first decreased and then increased as the SDS concentration increased, and 5.0% SDS‐modified 11S plastic had the highest tensile strength and elongation. The SEM observations supported these results. A water‐absorption test showed a reduction in the water resistance of 11S plastics after SDS modification. The rate of water absorption increased with increasing SDS concentration. The hydrophobic interaction between SDS molecules and 11S protein was found to have important effects on the thermal and mechanical properties and the water absorption of 11S plastics. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 166–175, 2001  相似文献   

13.
(Low‐density polyethylene) (LDPE)/clay nanocomposites were prepared by melt blending in a twin‐screw extruder by using different mixing methods. Zinc‐neutralized carboxylate ionomer was used as a compatibilizer. Blown films of the nanocomposites were then prepared. The effect of mixing method on the clay dispersion and properties of the nanocomposites was evaluated by wide‐angle X‐ray diffraction analysis, mechanical properties, thermal properties, and barrier properties. The structure and properties of nanocomposites containing different amounts of nanoclay prepared by selected mixing techniques were also investigated. It was found that melt compounding of Surlyn/clay masterbatch with pure LDPE and Surlyn (two‐step‐a method) results in better dispersion and intercalation of the nanofillers than melt mixing of LDPE/Surlyn/clay masterbatch with pure LDPE and surlyn (two‐step‐b method) and direct mixing of LDPE with clay. The films containing ionomer have good barrier properties. A wide‐angle X‐ray diffraction pattern indicates that intercalation of polymer chains into the clay galleries decreases by increasing the clay content. Barrier properties and tensile modulus of the films were improved by increasing the clay content. In addition, tensile strength increased in the machine direction, but it decreased in the transverse direction by increasing the clay content. DSC results showed that increasing the clay content does not show significant change in the melting and crystallization temperatures. The results of thermogravimetric analysis showed that the thermal stability of the nanocomposites decreased by increasing the clay content more than 1 wt%. J. VINYL ADDIT. TECHNOL., 21:60–69, 2015. © 2014 Society of Plastics Engineers  相似文献   

14.
New type of nanocomposites containing various proportions of montmorillonite in aromatic polyamide was prepared via solution intercalation method. Aramid chains were synthesized by reacting 4,4′‐oxydianiline with isophthaloyl chloride in N,N′‐dimethyl acetamide. Dodecylamine was used as swelling agent to change the hydrophilic nature of montmorillonite into organophilic. Appropriate amounts of organoclay were mixed in the polymer solution using high‐speed mixer for complete dispersion of the clay. Thin films cast from these materials after evaporating the solvent were characterized by XRD, TEM, mechanical, thermal, and water absorption measurements. The structure and morphology of the nanocomposites determined by XRD and TEM revealed the formation of exfoliated and intercalated clay platelets in the aramid matrix. Mechanical data indicated improvement in the tensile strength and modulus of the nanocomposites with clay loading up to 6 wt%. The glass transition temperature increased up to 12 wt% clay content and thermal stability amplified with increasing clay loading. The water absorption reduced gradually as a function of organoclay and approached to zero with 20 wt% organoclay in the aramid. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers  相似文献   

15.
Composite fabricated from starch and different concentrations of clay was prepared by solution casting method. The casted film was irradiated to different gamma irradiation doses 10, 20, 30, and 40 kGy. The dispersion of clay into starch was investigated by using X‐ray diffraction (XRD). The structural morphology of the composite was measured by scanning electron microscope and infrared spectroscopy. Film properties, such as water vapor transmission, mechanical, and thermal properties were also measured. The gel content and swelling behavior of the starch/clay composite were investigated. It was found that the gel content increases with increasing clay content and irradiation dose. The results obtained indicate that the starch/clay composite showed an increase in the tensile strength, thermal stability. Moreover, there is a decrease in water vapor transmission (WVRT) which improves its barrier properties. Both XRD and infrared spectroscopy showed that starch can be intercalated into the clay galleries. Also antibiotic drug Chlortetracycline HCl was loaded into the starch/clay composite by direct adsorption method. Chlortetracycline HCl adsorption capacity of composite was found to increase from 1.13 to 4.20 mg Chlortetracycline HCl per gram dry film with increasing amount of drug concentration. In vitro drug release studies in different buffer solutions showed that the basic parameters affecting the drug release behavior of the film are pH of the solution, drug concentration, and time. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

16.
Biodegradable thermoplastic starch (TPS)/clay hybrids were prepared by melt intercalation. Three organically modified montmorillonite (MMT) with different ammonium cations and one unmodified Na+ MMT (Cloisite Na+) were used. Cloisite Na+ showed the best dispersion in the TPS matrix. It was observed that the TPS/Cloisite Na+ hybrid showed an intercalation of TPS in the silicate layer due to the matching of the surface polarity and interactions of the Cloisite Na+ and the TPS, which gives higher tensile strength and better barrier properties to water vapor as compared to the other TPS/organoclay hybrids as well as the pristine TPS. It was found that the dynamic mechanical properties of the TPS/clay hybrids were also affected by the polar interactions.  相似文献   

17.
This work presents two new related aspects in heavy‐metal adsorption. The first aspect is the use of Cloisite® C20A‐polycaprolactone (C20A‐PCL) composite with the aid of dry Na2SO4 in Pb(II) extraction from water. The composite was fabricated by means of the melt‐blending method at a filler loading rate of 3% (w/w). This material was able to remove 87% of Pb(II) from water despite the fact that the polymer is a thermoplastic and the C20A is hydrophobic. The second aspect is the modeling of the adsorption data obtained using polymer‐clay composites synthesized via the melt‐blending method by artificial neural networks. A network with 10 neurons and using TRAINLM, and employing tansig function in the input layer and purelin in the output layer was found to be optimal. The network was used to predict the adsorption efficiency of Pb(II) by several clay‐polymer composites and the correlation was satisfactory. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 3894–3901, 2013  相似文献   

18.
The structural and thermal characteristics of poly(L ‐lactic acid)/layered‐silicate hybrid materials that were produced via two different routes, namely by solvent casting and by melt mixing, were compared in association with the degree of clay modification. Investigation of the produced materials' structure revealed that, at low modification levels, melt blending is necessary in dispersing the amine‐treated clay into the polymer matrix. At intermediate degrees of modification, both techniques are capable of swelling the silicate clay with the solution casting to be a more effective method. Thermal measurements showed that the clay modification level influences significantly the thermal stability of both solution and melt processed hybrids. Moreover, the material derived from melt mixing displayed a higher onset decomposition temperature. The glass transition temperature of the polymer was not significantly affected by the preparation method followed. However, the crystallization process was found to be strongly dependent on both the preparation method and the degree of clay modification. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

19.
Vinylester resin‐clay hybrids were prepared by the mixing different types of organically‐modified montmorillonite (OMMT) with vinylester resin (VER) prepolymer, followed by thermal polymerization. VER prepolymer was synthesized from the reaction of diglycidylether of bisphenol‐A (DGEBA) with acrylic acid. Various types of organic ammonium salts have been used as intercalating agents for montmorillonite, including N,N‐dimethyl‐N‐(4‐vinylbenzyl)stearyl ammonium chloride (VSA), N‐allyl‐N,N‐dimethyl‐stearyl ammonium chloride (ASA) and N,N‐dimethyl‐stearyl ammonium chloride (SA). The dispersion of OMMT into VER matrix was studied by XRD, which indicates the dependence of the morphology mainly on the OMMT content. UV–vis spectra of the hybrids were used to give a quantitative value of the effect of OMMT content on the transparency of VER/OMMT hybrid films. Also, the Vickers test has been performed to study the effect of OMMT content on the surface hardness of the hybrid films. In addition, the thermal properties of the hybrids have been characterized by measuring the softening points and thermogravimetric analyses of the hybrids in comparison with the pure resin. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

20.
A series of novel composites and nanocomposites xerogels based on acrylic acid, sepiolite and N,N′‐methylenebisacrylamide were prepared using a solution polymerization technique at 70 °C. The quality of dispersion of the micronized sepiolite in the monomer is the crucial point for obtaining nanocomposites. A good dispersion explains the improvement of the absorbent properties of the nanocomposites with respect to the composites. This work investigates not only the influence of the mixing procedure on the swelling behaviour, but also the effect of the amount of clay on the absorbency of these hydrogels in deionized water and saline solution (0.2 wt% NaCl(aq)). A crosslinker concentration of 5 wt% sepiolite nanocomposite superabsorbent was shown to give the best results (1419 g g?1). Moreover, experimental results indicate that the absorbency in saline solution is smaller than that in deionized water. Rates of swelling for these absorbents were found to fit the Voigt expression. Finally, the model approximates Case II sorption in the early stages of the swelling process and Case I in the later stages. Copyright © 2006 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号