首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 128 毫秒
1.
The effects of KOH on the supercritical hydrothermal synthesis of cobalt oxide and manganese oxide particles are investigated using a continuous-flow reactor. Significant changes in morphology, particle size, and oxidation state are observed by adding KOH. The spinel Co3O4 phase is transformed to a rocksalt CoO phase and the pyrolusite MnO2 phase is transformed to a hausmannite Mn3O4 phase in the presence of 0.5 M KOH. The average particle size of the metal oxides decreased with an addition of KOH. The OH ions of KOH may act as a reducing agent as well as a supersaturation enhancing agent under supercritical water conditions.  相似文献   

2.
Ni–Al–NO3 layered double hydroxides (LDH) are electrodeposited on the glassy carbon (GC) electrodes and the electrocatalytic activities of the modified electrodes toward methanol oxidation are studied in detail by cyclic voltammetry and chronoamperometry. Various factors affecting the electro-oxidation of methanol are investigated for optimizing the electrocatalytic properties and making the mechanism clearly such as methanol concentration, scan rate, KOH concentration, Ni:Al ratio of Ni–Al LDH used. The results show that Ni–Al–NO3 LDH exhibit higher electrocatalytic activity for methanol oxidation and better stability than that of Ni(OH)2 prepared under the same condition. The LDH with Ni:Al ratio of 3:1 display a good electrocatalytic activity for methanol oxidation in 0.5 M KOH. The mechanism of methanol oxidation on Ni–Al LDHf/GC electrode is also proposed according to the experimental results, involving in both a chemical oxidation via Fleischmann's mechanism and a direct electro-oxidation on the Ni3+ oxide surface.  相似文献   

3.
Electrochemical and XPS investigations of cobalt in KOH solutions   总被引:1,自引:0,他引:1  
The electrochemical behaviour of cobalt in KOH solutions of different concentrations was studied. The effects of applied potential, temperature and the presence of aggressive Cl ions were investigated. Different electrochemical methods such as open-circuit potential measurements, polarisation techniques and electrochemical impedance spectroscopy (EIS) were used. The electrochemical behaviour of cobalt in naturally aerated KOH solutions is characterized by three different regions according to the alkali concentration. Corrosion behaviour was observed at high concentrations (0.3–1.0 M); passivation at lower concentrations (0.01–0.05 M), and at intermediate concentrations (0.1–0.2 M) corrosion followed by passivation was recorded. The corrosion parameters (i corr, E corr, and R corr) under various conditions were calculated. Equivalent-circuit models for the electrode–electrolyte interface under different conditions were proposed. The experimental impedance data were fitted to theoretical data according to the proposed models. The relevance of the proposed models to the corrosion–passivation phenomena occurring at the electrode–solution interface was discussed. The electrochemical experimental results and discussions were supported by surface analytical techniques.  相似文献   

4.
The ac impedance properties of silver in 1 mol kg?1 KOH were studied under potentiostatic conditions over the temperature range 295–478 K. Measurements were obtained over the frequency range 0.5 Hz–5 kHz, and were analyzed in terms of equivalent in terms of equivalent circuits. It was shown that provision for surface roughness is required for a satisfactory explanation of the impedance data. Values for the double layer capacity and the concentration AgO? ions at the electrode surface could generally then be obtained. At potentials corresponding to the formation of Ag2O, it is demonstrated that both diffusion in solution and diffusion in the oxide film are operative. At elevated temperatures, the rate of growth of Ag2O centres is controlled partly by diffusion in the oxide and party by a reaction step at the growing interfaces of the centers. The subsequent formation of Ag2O2, at all temperatures in the range studied, is interpreted on the basis of an electrocrystallisation impedance.  相似文献   

5.
E. Rashtizadeh  M. Ghandi 《Fuel》2010,89(11):3393-222
Transesterification of soybean oil (TSO) with methanol to methyl esters (biodiesel) was found to proceed in the presence of KOH loaded on aluminosilicate layers (bentonite, kaolinite), microporous materials (zeolite Y, clinoptiloite), mesoporous materials (MCM-41, Al-MCM-41), some oxides (Al2O3, TiO2, SiO2), and silica gel as heterogeneous catalysts. Effect of reaction parameters such as KOH wt.%, amount of catalyst, reaction time, reaction temperature, molar ratio of methanol to oil and TSO yields up to 99% will be discussed in this presentation. Utilization of bentonite and kaolinite as cheap and eco-friendly solid supports is promising.  相似文献   

6.
Detailed analysis is described of the samples taken after suitable reaction times from the actual reaction mixture during the production of biodiesel fuel using methanolysis of rapeseed oil catalyzed by KOH. Three methods for stoppage of reaction (neutralisation of catalyst, dilution by two suitable solvents) in the sample are used. The contents of mono‐, di‐ and triacylglycerols, methylesters of fatty acids (biodiesel) and potassium salts of fatty acids of rapeseed oil, glycerol (by HPLC method), basicity (by potentiometric titration) and water (by GC and Karl‐Fischer method) in the samples are determined. An example of these determinations is described.  相似文献   

7.
Liquid phase methanol and dimethyl ether synthesis from syngas   总被引:4,自引:0,他引:4  
The Liquid Phase Methanol Synthesis (LPMeOHTM) process has been investigated in our laboratories since 1982The reaction chemistry of liquid phase methanol synthesis over commercial Cu/ZnO/Al2O3 catalysts, established for diverse feed gas conditions including H2-rich, CO-rich, CO2-rich, and CO-free environments, is predominantly based on the CO2 hydrogenation reaction and the forward water-gas shift reactionImportant aspects of the liquid phase methanol synthesis investigated in this in-depth study include global kinetic rate expressions, external mass transfer mechanisms and rates, correlation for the overall gas-to-liquid mass transfer rate coefficient, computation of the multicomponent phase equilibrium and prediction of the ultimate and isolated chemical equilibrium compositions, thermal stability analysis of the liquid phase methanol synthesis reactor, investigation of pore diffusion in the methanol catalyst, and elucidation of catalyst deactivation/regenerationThese studies were conducted in a mechanically agitated slurry reactor as well as in a liquid entrained reactorA novel liquid phase process for co-production of dimethyl ether (DME) and methanol has also been developedThe process is based on dual-catalytic synthesis in a single reactor stage, where the methanol synthesis and water gas shift reactions takes place over Cu/ZnO/Al2O3 catalysts and the in-situ methanol dehydration reaction takes place over -Al2O3 catalystCo-production of DME and methanol can increase the single-stage reactor productivity by as much as 80%. By varying the mass ratios of methanol synthesis catalyst to methanol dehydration catalyst, it is possible to co-produce DME and methanol in any fixed proportion, from 5% DME to 95% DMEAlso, dual catalysts exhibit higher activity, and more importantly these activities are sustained for a longer catalyst on-stream life by alleviating catalyst deactivation.  相似文献   

8.
The surface strengthening by ion exchange technology was used to improve the strength of thin building tiles. The effects of exchange time, exchange temperature, and content of KOH additive on strengthening of building tiles were investigated by analyzing the flexural strength and distribution of K+ in the samples. The results showed that the addition of .3 mol% KOH to the molten salt of industrial KNO3 at 450°C for 5 h resulted in a maximum flexural strength of 86.53 MPa, which was 50.3% higher than that of the sample without ion exchange and 8.9% higher than without KOH addition. After ion exchange, the concentration of K+ ion in cross-section of the sample decreased with increasing distance from the sample surface, and the diffusion coefficient changed with the change of the content of KOH additive in the molten salt, increasing the diffusion coefficient of K+ ion from .93 × 10−15 to 1.8 × 10–15 m2/s by adding .3 mol% KOH.  相似文献   

9.
The enumeration of the analytical methods used in the production of biodiesel from rapeseed oil and methanol catalyzed by KOH and published till 1997 is given. Some of our original methods for individual or simultaneous determination of the main components in the reaction mixture are described. All these methods can be also used to analyse the non-equilibrium complex and heterogeneous mixture.  相似文献   

10.
The present research explores the feasibility of microwave irradiation for preparation of high surface area activated carbon from pineapple peel (PPAC), an agricultural effluent emitted from the food can processing industries via KOH and K2CO3 activation. The activation process was performed at the microwave power of 600 W and irradiation time of 6 min. The equilibrium behavior of PPAC was investigated by performing batch adsorption experiments using methylene blue as adsorbate. Nonlinear adsorption isotherm models, Langmuir, Freundlich and Temkin were used to simulate the equilibrium data. KOH activated sample demonstrated a better development of pore structure, with the BET surface area, total pore volume and average pore size of 1006 m2/g, 0.59 m3/g and 23.44 Å, respectively, while the monolayer adsorption capacity of methylene blue was determined to be 462.10 mg/g. The findings support the potential use of microwave assisted KOH and K2CO3 activation as a promising activation technique.  相似文献   

11.
For oxygen and hydrogen evolving transparent nickel electrodes in KOH solutions, parameters characterizing the behaviour of bubbles which are adhered to the electrode surface during gas evolution, have been determined in dependence on current density, i, velocity of solution flow, v, pressure, p, temperature, T, and concentration of KOH. Based on experimental data a new basic bubble parameter, J, has been introduced, which accounts for the bubble behaviour. It has been found that J = a1ih1 and J/(J0?J) = a2vh2 where J0 = J at v = 0 ms?1 and a1,a2h1 and h2 are empirical constants; some of these depend on nature of gas evolved. Moreover, the parameter J is almost proportional to the KOH concentration, increases in a decreasing rate with increasing pressure and increases linearly with the reciprocal of the absolute temperature.  相似文献   

12.
Although potassium hydroxide (KOH) is known to be effective in generating highly porous activated carbons, the mechanism of KOH activation has not been well elucidated. To develop porosity in carbon, a high KOH/carbon mass ratio must be maintained. Consequently, KOH, as the activating agent, represents a major part of the cost of the activation process. Focusing on the mechanism, particularly the activation products, the present work attempted to establish the technical feasibility of recycling KOH. Experiments revealed that the major products of KOH activation at 600–900°C are metallic K, K2CO3, CO and H2, which is supported by thermodynamic analysis. The overall reaction may be written as 6KOH + 4C = K2CO3 + 4K + 3H2 + 3CO. At temperatures over 900°C, K2CO3 becomes unstable and participates in activation reactions with carbon; a more suitable overall reaction would be KOH + C = CO + K + 0.5H2. As potassium ion is reduced to metallic K which is readily converted into KOH and hydrogen gas upon reacting with water, KOH recycling is feasible. The reuse of KOH in chemical activation could substantially reduce the cost of activation process. © 2011 Canadian Society for Chemical Engineering  相似文献   

13.
The performance of a direct borohydride fuel cell (DBFC) based on a polyacrylamide (PAAm) gel polymer electrolyte system is investigated at different electrolyte concentrations. The DBFC, constructed using 2M sodium borohydride (NaBH4) as the fuel and potassium hydroxide (KOH) solution gelled with PAAm as the electrolytes yield the highest electrical conductivity of 2.73 × 10?1 S cm?1 at 6M KOH. The optimized composition, PAAm + 2M NaBH4 + 6M KOH, and the selected composition, PAAm + 2M NaBH4 + 3M KOH are then used in preparing the cells. Open‐circuit voltages for fuel cells is about 0.85–0.92 V, and the discharge characteristic produce discharge capacities of about 257.12–273.12 mAh cm?2 for cells with PAAm‐6M KOH. Current‐voltage and current density‐power density plots and internal resistance for both cells are almost the same. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

14.
The industrial copper-zinc catalyst MEGAMAX®-phase synthesis of methanol was tested under the conditions of a liquid-phase process while varying the pressure (0.5–7.0 MPa) and the gas mixture flow rate (40–400 mLN/min). The catalyst was shown to have high activity and selectivity in the synthesis of methanol. The best result (730 g(methanol)/kg(cat) h?1 and selectivity 99.2%) was obtained under reaction conditions of 2.0 MPa, 240°C, H2: CO: CO2: N2 = 70.5: 17.9: 6.5: 5.1, and reaction time 3 h. The concentration of methane by-product increased at gas mixture pressures over 3.0 MPa, lowering the selectivity of the process with respect to methanol. Trace amounts of ethane and water were found in addition to methane. Dimethyl ether, a typical by-product of methanol synthesis, was missing from the vapor-gas mixture over the range of pressures. The results from this study indicate that the MEGAMAX® can be used in the liquid-phase synthesis of methanol.  相似文献   

15.
Thermal-shock KOH activation of brown coal (800 °C, KOH/coal ratio 1 g/g) was shown to produce nanoporous activated carbon with more developed surface area than thermally-programmed heating (SBET up to 1700 vs 1000 m2/g). Increasing the KOH/coal ratio (up to 1 g/g) in the activated mixture increases the total pore volume (0.14–1.0 cm3/g), the micropore volume (0.03–0.71 cm3/g), and also the volume of subnanometer pores (0.01–0.40 cm3/g). Thermal shock produces nanoporosity at lower KOH/coal ratios (0.5-1.0 g/g) than respective low-rate heating KOH activation.  相似文献   

16.
The activity of nickel—zinc and smooth nickel electrodes for methanol oxidation is investigated in KOH 1 M + CH3OH 1 M at 60°C. Nickel—zinc alloys of different composition are easily obtained from electrodeposition. After their attack in KOH 1 M, the electrodes contain about 50% of zinc and they have the βNiZn alloy structure. The I(V) curves are compared. On smooth nickel the oxidation of methanol is strongly inhibited by the superficial oxides whereas on nickel—zinc electrodes superficial oxides are easier to reduce. The effect of adsorbed hydrogen and of mixed oxides is discussed.  相似文献   

17.
Isobaric vapor-liquid equilibrium (VLE) data for {methanol (1)+benzene (2)+1-octyl-3-methylimidazolium tetrafluoroborate (3)} where 3 is an ionic liquid ([OMIM]+[BF4]?) at atmospheric pressure (101.32 kPa) were measured with a modified Othmer still. The results showed that the ionic liquid studied can transfer the azeotropic point and eliminate the azeotropic phenomena when its concentration is up to x3=0.30. This means that [OMIM]+[BF4]? can be used as a promising entrainer in the application of extractive distillation. The measured ternary data were correlated using the NRTL model.  相似文献   

18.
A potential application of KOH/bentonite as a catalyst for biodiesel production was studied. A series of KOH/bentonite catalysts was prepared by impregnation of bentonite from Pacitan with potassium hydroxide. The ratios between KOH and bentonite were 1:20, 1:10, 1:5, 1:4, 1:3, and 1:2. The characterization of KOH/bentonite and natural bentonite was conducted by nitrogen adsorption and XRD analysis. The effects of various reaction variables on the yield of biodiesel were investigated. The highest yield of biodiesel over KOH/bentonite catalyst was 90.70 ± 2.47%. It was obtained at KOH/bentonite 1:4, reaction time of 3 h, 3% catalyst, methanol to oil ratio of 6, and the reaction temperature at 60 °C.  相似文献   

19.
Reaction kinetics of methanol oxidation in supercritical water at high pressure condition (420 °C; 34-100 MPa; ρ = 300-660 kg/m3) was investigated. Pseudo-first order rate constant for methanol decomposition increased with increasing water density. Effects of supercritical water on the reaction kinetics were investigated using a detailed chemical kinetics model. Incorporating the effect of diffusion in a reduced model revealed that overall kinetics for SCWO of methanol is not diffusion-limited. Roles of water as a reactant were also investigated. The dependence of sensitivity coefficient for methanol concentration and rate of production of OH radical on water density indicated that a reaction, HO2 + H2O = OH + H2O2, enhanced the OH radical production and thereby facilitated the decomposition of methanol. It is presumed that concentration of key radicals could be controlled by varying pressure intensively.  相似文献   

20.
Multi-walled carbon nanotubes (MWNTs) synthesized by the catalytic decomposition of benzene were activated by KOH, CO2 or air. The adsorption isotherms of the activated MWNTs were analyzed and their pore size distributions were obtained. The results showed that the specific surface areas of the MWNTs activated by KOH, CO2 and air were increased to 785 m2/g, 429 m2/g and 270 m2/g, respectively. The MWNTs activated by KOH were rich in micropores and mesopores, especially high mesopores having volumes up to 1.04 cm3/g. The CO2-activated MWNTs also had many micropores while the air-activated MWNTs had a much smaller micropore volume. The morphologies of the activated MWNTs were examined by transmission electron microscopy and high resolution transmission electron microscopy, and the activation mechanisms were discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号