首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to obtain polyamides with enhanced solubility and processability, as well as good mechanical and thermal properties, several novel polyamides containing sulfone‐ether linkages and xanthene cardo groups based on a new diamine monomer, 9,9‐bis[4‐(4‐aminophenoxy)phenyl]xanthene (BAPX), were investigated. The BAPX monomer was synthesized via a two‐step process consisting of an aromatic nucleophilic substitution reaction of readily available 4‐chloronitrobenzene with 9,9‐bis(4‐hydroxyphenyl)xanthene in the presence of potassium carbonate in N,N‐dimethylformamide, followed by catalytic reduction with hydrazine and Pd/C. Four novel aromatic polyamides containing sulfone‐ether linkages and xanthene cardo groups with inherent viscosities between 0.98 and 1.22 dL g?1 were prepared by low‐temperature polycondensation of BAPX with 4,4′‐sulfonyldibenzoyl chloride, 4,4′‐[sulfonyl‐bis(4‐phenyleneoxy)]dibenzoyl chloride, 3,3′‐[sulfonyl‐bis(4‐phenyleneoxy)]dibenzoyl chloride and 4,4′‐[sulfonyl‐bis(2,6‐dimethyl‐1,4‐phenyleneoxy)]dibenzoyl chloride in N,N‐dimethylacetamide (DMAc) solution containing pyridine. All these new polyamides were amorphous and readily soluble in various polar solvents such as DMAc and N‐methylpyrrolidone. These polymers showed relatively high glass transition temperatures in the range 238–298 °C, almost no weight loss up to 450 °C in air or nitrogen atmosphere, decomposition temperatures at 10% weight loss ranging from 472 to 523 °C and 465 to 512 °C in nitrogen and air, respectively, and char yields at 800 °C in nitrogen higher than 50 wt%. Transparent, flexible and tough films of these polymers cast from DMAc solution exhibited tensile strengths ranging from 78 to 87 MPa, elongations at break from 9 to 13% and initial moduli from 1.7 to 2.2 GPa. Primary characterization of these novel polyamides shows that they might serve as new candidates for processable high‐performance polymeric materials. Copyright © 2010 Society of Chemical Industry  相似文献   

2.
A new copper‐containing Schiff‐base diamine, benzil bis(thiosemicarbazonato)copper(II) (CuLH4), was synthesized in two steps from benzil bisthiosemicarbazone (LH6). The ligand LH6 and the complex CuLH4 were characterized with Fourier transform infrared spectroscopy, 1H‐NMR, and elemental analysis. CuLH4 was used to prepare novel polyamides. The low‐temperature solution polycondensation of the complex CuLH4 with various aromatic and aliphatic diacid chlorides afforded copper‐containing Schiff‐base polyamides with inherent viscosities of 0.25–0.36 dL/g in N,N‐dimethylformamide (DMF) and 0.75 dL/g in H2SO4 at 25°C. The polyamides were generally soluble in a wide range of solvents, such as DMF, N,N‐dimethylacetamide, tetrahydrofuran, dimethyl sulfoxide, ethyl acetate, tetrachloroethane, hexamethylene phosphoramide, N‐methylpyrrolidone, and pyridine. Thermal analysis showed that these polyamides were practically amorphous, decomposed above 270°C, and exhibited 50% weight loss at and above 400°C. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

3.
A series of optically active polyamides containing di‐O‐methyl‐L ‐tartaryl moieties in the main chain were synthesized by polycondensation of di‐O‐methyl‐L ‐tartaryl chloride 5 with diamines and characterized by gel permeation chromatography, UV–vis, circular dichroism (CD), IR, and NMR spectroscopies. The polycondensation reaction could be carried out under mild conditions and the reaction time was short (2–3 h). The key monomer 5 prepared from L ‐tartaric acid via esterification, etherification, hydrolysis, and chlorination was easily purified by vacuum sublimation. These polyamides with number average molecular weights ranging from 14,000 to 35,000, displayed large optical activity in dimethyl sulfoxide solution, and their specific optical rotations oscillated between 87.2° and 210.7° depending on the structures of the diamines. The glass transition temperatures of these polyamides were in the range of 106–191°C, and the 10% mass loss occurred at temperature above 300°C. The polyamides derived from aromatic diamines exhibited higher Tg and thermal stability than those derived from aliphatic diamines. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

4.
A series of aromatic polyamides containing an s‐triazine ring with thiophenoxy linkages was synthesized from two new diacids, namely 2,4‐bis‐(4‐carboxyphenoxy)‐6‐thiophenoxy‐s‐triazine and 2,4‐bis‐(3‐carboxyphenoxy)‐6‐thiophenoxy‐s‐triazine, and commercially available aromatic diamines by using Yamazaki's phosphorylation reaction. The polyamides were obtained in good yields and were characterized by solubility tests, viscosity measurements, FTIR, 1H and 13C NMR spectroscopy, X‐ray diffraction studies and thermogravimetric analysis. The polyamides were found to have inherent viscosities in the range of 0.35 to 0.56 dl g?1 in N,N‐dimethylacetamide (DMAc) at 30 ± 0.1 °C. All the polyamides were readily soluble in solvents such as DMAc, N‐methyl‐2‐pyrrolidone (NMP), N,N‐dimethylformamide (DMF) and m‐cresol. Thermogravimetric analysis of the polyamides indicated no weight loss below 345 °C under a nitrogen atmosphere. Copyright © 2004 Society of Chemical Industry  相似文献   

5.
Six new polyamides 5a‐f containing flexible trimethylene segments in the main chain were synthesized through the direct polycondensation reaction of 1,3‐(4‐carboxy phenoxy) propane 3 with six derivatives of aromatic diamines 4a‐f in a medium consisting of N‐methyl‐2‐pyrrolidone, triphenyl phosphite, calcium chloride, and pyridine. The polycondensation reaction produced a series of novel polyamides containing flexible trimethylene segments in the main chain in high yield with inherent viscosities between 0.32 and 0.68 dL/g. The resulted polymers were fully characterized by means of FTIR spectroscopy, elemental analyses, inherent viscosity, and solubility tests. Thermal properties of these polymers were investigated by using thermal gravimetric analysis (TGA) and differential thermal gravimetric (DTG). The glass‐transition temperatures of these polyamides were recorded between 165 and 190°C by differential scanning calorimetry, and the 10% weight loss temperatures were ranging from 360 to 430°C under nitrogen. 1,3‐(4‐Carboxy phenoxy) propane 3 was prepared from the reaction of 4‐hydroxy benzoic acid 1 with 1,3‐dibromo propane 2 in the presence of NaOH solution. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

6.
A series of aromatic polyamides containing 5‐(4‐acetoxy‐benzamido) pendent groups have been synthesized and their properties have been characterized and compared with those of related polyamides. The polyamides have weight‐ and number‐average molecular weights in the range of 36,680–65,700 and 12,685–35,490, respectively, and polydispersities in the range of 1.82–3.66. These polymers show good thermal stability comparable to traditional aromatic polyisophthalamides, with initial decomposition temperature between 270–320°C and glass transition temperature in the range of 230–270°C. Compared with related polyisophthalamides without any pendent groups, the present polymers show better solubility in certain solvents such as N‐methylpyrrolidinone and dimethylacetamide and can be cast from solutions into thin transparent flexible films having dielectric constants in the range of 3.42–4.27. The polymer films display remarkable hydrophilicity, which makes them potential candidates for use as advanced materials in humidity sensors. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 650–657, 2001  相似文献   

7.
Seven new polyamides 6a–g were synthesized through the direct polycondensation reaction of 2,5‐bis[(4‐carboxyanilino) carbonyl] pyridine 4 with seven derivatives of aromatic diamines 5a–g in a medium consisting of N‐methyl‐2‐pyrrolidone, triphenyl phosphite, calcium chloride, and pyridine. The polycondensation reaction produced a series of novel polyamides containing pyridyl moiety in the main chain in high yield with inherent viscosities between 0.32 – 0.72 dL/g. The resulted polymers were fully characterized by means of FTIR spectroscopy, elemental analyses, inherent viscosity, and solubility tests. Thermal properties of these polymers were investigated by using thermal gravimetric analysis and differential thermal gravimetric. All the polymers were soluble at room temperature in polar solvents, such as N,N‐dimethyl acetamide, N,N‐dimethyl formamide, dimethyl sulfoxide, and N‐methyl‐2‐pyrrolidone. 2,5‐Bis[(4‐carboxyanilino) carbonyl] pyridine 4 as a new monomer containing pyridyl moiety was synthesized by using a two‐step reaction. At first 2,5‐pyridine dicarboxylic acid 1 was converted to 2,5‐pyridine dicarbonyl dichloride 2 . Then diacid 4 was prepared by condensation reaction of diacid chloride 2 with p‐aminobenzoic acid 3. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

8.
A series of novel aromatic polyamides containing both fluorene or xanthene cardo moieties and fluorinated phenoxy pendant groups were synthesized from two fluorinated isophthaloyl chlorides and four diamines containing cardo groups by the low‐temperature solution polycondensation in N,N‐dimethylacetamide (DMAc). The obtained polymers were characterized by different physicochemical techniques. All the polymers were amorphous and readily soluble in many organic solvents such as DMAc, N‐methyl‐2‐pyrrolidinone, N,N‐dimethylformamide, dimethyl sulfoxide, pyridine, and tetrahydrofuran at room temperature. The new fluorinated polyamides had high thermal stability with the glass transition temperatures of 237–259°C, the temperatures at 5% weight loss of 437–476°C in nitrogen. All the polymers formed transparent, strong, and flexible films with tensile strengths of 70.6–87.5 MPa, tensile moduli of 2.23–2.78 GPa, and elongations at break of 5.8–8.7%. These polyamide films had high optical transparency with an ultraviolet–visible absorption cutoff wavelength of 352–368 nm, low dielectric constants of 3.24–3.45 (1 MHz), and lower water absorptions of 1.06–1.43%. POLYM. ENG. SCI., 57:1234–1241, 2017. © 2017 Society of Plastics Engineers  相似文献   

9.
Tetraphenylthiophene diamine (TPTDA) was prepared through a modified three‐step route to achieve an improved overall yield. TPTDA reacted with succinic, adipic, suberic, sebasic, and fumaric acids via the Yamazaki phosphorylation method to yield novel partially aromatic polyamides (TPT series). A counterpart polyamide series based on p‐phenylene diamine (Ph series) was also synthesized under the same conditions. All of the polymers were characterized by means of spectrochemical (Fourier transform infrared spectroscopy, 1H‐nuclear magnetic resonance (NMR), and 13C‐NMR) and thermal (differential scanning calorimetry and thermogravimetric) methods of analysis. Solubility of TPT polyamides was clearly improved due to the presence of the bulky aromatic diamine as well as flexible CH2—CH2 segments. The highly phenylated thiophene diamine moiety was recognized to improve thermal stability of the TPT polyamides in comparison with Ph polyamides (integral procedural decomposition temperature (IPDT) 480–517°C against 454–485°C). A favorable balance was recognized in regard to solubility, thermostability, and melting temperature in the TPT polyamides, especially TPT4 and TPT6. Therefore, they may be considered good candidates for processable polymers. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 1144–1153, 2000  相似文献   

10.
A novel bismaleimide, 2,2′‐dimethyl‐4,4′‐bis(4‐maleimidophenoxy)biphenyl, containing noncoplanar 2,2′‐dimethylbiphenylene and flexible ether units in the polymer backbone was synthesized from 2,2′‐dimethyl‐4,4′‐bis(4‐aminophenoxy)biphenyl with maleic anhydride. The bismaleimide was reacted with 11 diamines using m‐cresol as a solvent and glacial acetic acid as a catalyst to produce novel polyaspartimides. Polymers were identified by elemental analysis and infrared spectroscopy, and characterized by solubility test, X‐ray diffraction, and thermal analysis (differential scanning calorimetry and thermogravimetric analysis). The inherent viscosities of the polymers varied from 0.22 to 0.48 dL g−1 in concentration of 1.0 g dL−1 of N,N‐dimethylformamide. All polymers are soluble in N‐methyl‐2‐pyrrolidone, N,N‐dimethylacetamide, N,N‐dimethylformamide, dimethylsulfoxide, pyridine, m‐cresol, and tetrahydrofuran. The polymers, except PASI‐4, had moderate glass transition temperature in the range of 188°–226°C and good thermo‐oxidative stability, losing 10% mass in the range of 375°–426°C in air and 357°–415°C in nitrogen. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 279–286, 1999  相似文献   

11.
A series of new hexafluoroisopropylidene, isopropylidene, carbonyl, and ether moieties substituted polyamides have been prepared from aromatic diamines and various moieties substituted aromatic dianhydrides. The synthesized polyamides were readily soluble in polar solvents such as N‐methyl‐2‐pyrrolidone, N,N‐dimethylacetamide, N,N‐dimethylformamide, and dimethyl sulfoxide. These polyamides exhibited good thermal stability and high char yields. The chemical and physical properties of the newly prepared polyamide‐polyhedral oligomeric silsequioxanes (PA‐POSS) were compared in terms of their chemical structures and thermal properties. The morphological properties of the polymeric nanocomposites depend both on their chemical structure of dianhydride and the aggregation of POSS were investigated by scanning electron microscopy, transmission electron microscopy, and atomic force microscopy. Polyamides with bulky POSS and ?uoro groups can effectively decrease dielectric constants. The dielectric constants of PA‐POSS were found to be decreased from 3.75 to 3.29 by changing the substitution. These polyamides showed good thermal stability up to 353 °C for a 10 % weight loss. The fluorinated polyamides have relatively higher thermal stability than the polyamides without halogen because of high bond energy of C? F bond. The fiuorinated groups in the polymer backbone have played an important role in the improvement of dielectric performance of polymers. POLYM. ENG. SCI., 2013. © 2012 Society of Plastics Engineers  相似文献   

12.
New aromatic diamine containing preformed amide, ether, and methylene; bis-[(4′-aminobenzyl)-4-benzamide] ether (BABE), was synthesized and characterized by FT-IR, NMR, and mass spectrometry. Aromatic–aliphatic polyamides were prepared from BABE with aliphatic/aromatic diacids via Yamazaki’s polymerization. The polyamides were characterized by FT-IR, 1H NMR, inherent viscosity [ηinh], solubility tests, differential scanning calorimetry [DSC], thermogravimetric analysis [TGA], and X-ray diffraction [XRD]. Polyamides had inherent viscosities 0.35–0.84 dL/g, soluble in aprotic polar solvents like N-methyl-2-pyrrolidone, N, N-dimethyl acetamide and dimethyl sulphoxide containing LiCl due to an amorphous to partially crystalline morphology; as XRD patterns indicated. DSC analysis of polyamides showed glass transition temperatures 166–268 °C. Polyamides showed high thermal stability as they did not degrade below 300 °C, had 10% weight loss temperature higher than 375 °C, and the char yields at 900 °C were 22–55%; indicating potential applications as engineering materials.  相似文献   

13.
Aromatic polyamides containing thioether units were synthesized by interfacial polycondensation of 4,4′‐thiodibenzoyl chloride (or 4,4′‐bis(4‐chloroformylphenylthio)benzene) with aromatic diamines containing a nitrile unit. Their structure was established using 1H NMR and Fourier transform infrared spectroscopy. The inherent viscosities of the polyamides prepared with optimum synthesis conditions were in the range 0.71–0.84 dL g?1. These polyamides showed excellent thermal properties with glass transition temperatures of 210.5–219.6 °C, melting temperatures of 313.8–315.0 °C and initial degradation temperatures of 440–459 °C. They could be processed by melting due to their relatively wide processing window. Their tensile strengths were 71.3–79.1 MPa, water absorption was 0.17–0.22 wt%, and melt flowability was in the range 64.5 to 315.2 Pa s and 68.5 to 422.3 Pa s at different shear rates. At the same time, they were soluble in aprotic solvents such as N‐methyl‐2‐pyrrolidone, dimethylformamide and dimethylsulfoxide. The results suggest that these aromatic polyamides containing thioether units represent a promising type of heat‐resistant and processable engineering plastic. © 2012 Society of Chemical Industry  相似文献   

14.
A series of polyamides and poly(amide‐imide)s was prepared by direct polycondensation of ether and nitrile group containing aromatic diamines with aromatic dicarboxylic acids and bis(carboxyphthalimide)s respectively in N‐methyl 2‐pyrrolidone (NMP) using triphenyl phosphite and pyridine as condensing agents. New diamines, such as 2,6‐bis(4‐aminophenoxy)benzonitrile and 2,6‐bis(3‐aminophenoxy)benzonitrile, were prepared from 2,6‐dichlorobenzonitrile with 4‐aminophenol and 3‐aminophenol, respectively, in NMP using potassium carbonate. Bis(carboxyphthalimide)s were prepared from the reaction of trimellitic anhydride with various aromatic diamines in N,N′‐dimethyl formamide. The inherent viscosities of the resulting polymers were in the range of 0.27 to 0.93 dl g?1 in NMP and the glass transition temperatures were between 175 and 298 °C. All polymers were soluble in dipolar aprotic solvents such as dimethylsulfoxide, dimethylacetamide and NMP. All polymers were stable up to 350 °C with a char yield of above 40 % at 900 °C in nitrogen atmosphere. All polymers were found to be amorphous except the polyamide derived from isophthalic acid and the poly(amide‐imide)s derived from diaminodiphenylether and diaminobenzophenone based bis(carboxyphthalimide)s. Copyright © 2004 Society of Chemical Industry  相似文献   

15.
A series of polyamides were synthesized by the direct polycondensation of 2,2‐bis[4‐(4‐amino‐2‐fluorophenoxy)phenyl]hexafluoropropane with various commercially available dicarboxylic acids such as terephthalic acid, isophthalic acid, 5‐t‐butyl isophthalic acid, and 2,6‐naphthalene dicarboxylic acid. The synthesized polyamides were soluble in several organic solvents such as N,N‐dimethylformamide, N,N‐dimethylacetamide, dimethyl sulfoxide, tetrahydrofuran, and chloroform, and they exhibited inherent viscosities of 0.42–0.59 dL/g. The polyamides exhibited weight‐average molecular weights of up to 26,000, which depended on the exact repeating unit structure. These polyamides showed good thermal stability up to 440°C for a 10% weight loss in synthetic air. The polyamides synthesized from 5‐t‐butyl isophthalic acid and isophthalic acid exhibited glass‐transition temperatures of 217 and 185°C, respectively (by differential scanning calorimetry) in nitrogen. The polyamides synthesized from terephthalic acid and 2,6‐naphthalene dicarboxylic acid showed melting temperatures of 319 and 385°C, respectively. The polyamides films were pale yellow, with tensile strengths of up to 82 MPa, moduli of elasticity of up to 2.3 GPa, and elongations at break of up to 9%, which depended on the exact repeating unit structure. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 691–696, 2003  相似文献   

16.
A new diamine 5,5′‐bis[4‐(4‐aminophenoxy)phenyl]‐hexahydro‐4,7‐methanoindan ( 3 ) was prepared through the nucleophilic displacement of 5,5′‐bis(4‐hydroxylphenyl)‐hexahydro‐4,7‐methanoindan ( 1 ) with p‐halonitrobenzene in the presence of K2CO3 in N,N‐dimethylformamide (DMF), followed by catalytic reduction with hydrazine and Pd/C in ethanol. A series of new polyamides were synthesized by the direct polycondensation of diamine 3 with various aromatic dicarboxylic acids. The polymers were obtained in quantitative yields with inherent viscosities of 0.76–1.02 dl g−1. All the polymers were soluble in aprotic dipolar solvents such as N,N‐dimethylacetamide (DMAc) and N‐methyl‐2‐pyrrolidone (NMP), and could be solution cast into transparent, flexible and tough films. The glass transition temperatures of the polyamides were in the range 245–282 °C; their 10% weight loss temperatures were above 468 °C in nitrogen and above 465 °C in air. © 2000 Society of Chemical Industry  相似文献   

17.
BACKGROUND: Wholly aromatic polyamides (aramids) are high‐performance polymeric materials with outstanding heat resistance and excellent chemical stabilities due to chain stiffness and intermolecular hydrogen bonding of amide groups. Synthesis of structurally well‐designed monomers is an effective strategy to prepare modified forms of these aramids to overcome lack of organo‐solubility and processability limitations. RESULTS: A novel class of wholly aromatic polyamides was prepared from a new diamine, namely 2,2′‐bis(p‐phenoxyphenyl)‐4,4′‐diaminodiphenyl ether (PPAPE), and two simple aromatic dicarboxylic acids. Two reference polyamides were also prepared by reacting 4,4′‐diaminodiphenyl ether with the same comonomers under similar conditions. M?w and M?n of the resultant polymers were 8.0 × 104 and 5.5 × 104 g mol?1, respectively. Polymers resulting from PPAPE exhibited a nearly amorphous nature. These polyamides exhibited excellent organo‐solubility in a variety of polar solvents and possessed glass transition temperatures up to 200 °C. The 10% weight loss temperatures of these polymers were found to be up to 500 °C under a nitrogen atmosphere. The polymers obtained from PPAPE could be cast into transparent and flexible films from N,N‐dimethylacetamide solution. CONCLUSION: The results obtained show that the new PPAPE diamine can be considered as a good monomer to enhance the processability of its resultant aromatic polyamides while maintaining their high thermal stability. The observed characteristics of the polyamides obtained make them promising high‐performance polymeric materials. Copyright © 2009 Society of Chemical Industry  相似文献   

18.
In order to study systematically the effect of halogen substituents on both the solubility and the thermal stability of aromatic polyamides, new diamine monomers have been synthesized by introducing chlorine groups onto various positions of 4,4′‐diaminobenzanilide for the preparation of chlorinated aromatic polyamides. The monochlorinated aromatic polyamides, i.e., P‐LCl and P‐RCl, exhibited liquid crystalline property in 100% sulfuric acid solution in the temperature range from 40 and 60°C. However, the dichlorinated sample, i.e. P‐LRCl, did not exhibit the liquid crystalline property due to the bulkiness of two chlorine groups. Both P‐LCl and P‐RCl exhibited unimodal decomposition behavior in contrast to the chlorinated poly(p‐phenylene terephthalamide) (PPTA) that has been known to show bimodal decomposition behavior. The decomposition onset temperature of both P‐LCl and P‐RCl was 567°C, which was higher than 549°C of unchlorinated polyamide, P‐NCl, but the same as that of PPTA. The char yield was about 50% for both P‐LCl and P‐RCl and higher than 40% of both PPTA and P‐NCl. In the case of P‐LRCl, the decomposition onset temperature was 480°C, but the highest char yield of 60% was obtained. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 1387–1392, 2000  相似文献   

19.
A series of novel fluorine containing aromatic polyamides were synthesized by the direct polycondensation of various fluorine containing aromatic diamines and commercially available 5‐t‐butyl isophthalic acid. These polyamides have good solubility in several organic solvents such as dimethylformamide, N,N‐dimethylacetamide, 1‐Methyl‐2‐pyrrolidone, dimethyl sulfoxide, and tetrahydrofuran. The synthesized polymers exhibited inherent viscosities up to 0.93 dL/g and Mw up to 1,52,000 with PDI of 2.49. The polyamides exhibited good thermal stability up to 489°C for 10% weight loss in nitrogen and high glass transition temperature up to 273°C. Dynamic mechanical analysis showed a very good retention of storage modulus up to the glass transition temperature. The tan δ peak value at 1 Hz was used to calculate the Tg and these values are in good agreement with differential scanning calorimetry data. The polyamide films were flexible with tensile strength up to 72 MPa, elongations at break up to 14%, and modulus of elasticity up to 1.39 GPa depending on the exact repeating unit structure. X‐ray diffraction measurements indicate that these polyamides are semicrystalline. Rheology study showed same trend of melt viscosity behavior with different shear rate for all polymers. Water absorption study indicates the hydrophobic nature of the polymer. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

20.
Two novel diacid-based monomers have been synthesized by anchoring a benzylideneacetophenone (chalcone) moiety through an amide or ester bridge at the fifth position of the isophthalic acid ring. Two series of new polyamides bearing chalcone side chains were prepared by direct polycondensation reaction of the aforementioned dicarboxylic acids and various aromatic diamines in N-methyl-2-pyrrolidinone, using triphenyl phosphite and pyridine as condensing agents. Their molecular structure and the basic properties were investigated by nuclear magnetic resonance, Fourier-transform IR and UV–vis spectroscopy, differential scanning calorimetry, thermogravimetric analysis, and wide-angle X-ray diffraction. The inherent viscosity, molecular weights measurements (by gel permeation chromatography), water uptake, and solubility tests completed the research study. Introduction of the rigid and bulky chalcone units into the polymer side chains improved remarkably the solubility of the aromatic polyamides, endowed them with an amorphous nature, good thermal stability, and photosensitivity. The resulting polymers were obtained in good yields, inherent viscosities varied between 0.49 and 0.86 dL/g, and their relative high molecular weights conferred them film-forming properties. They were soluble in amide-type polar solvents, such as N,N-dimethylformamide, dimethyl sulfoxide, N,N-dimethylacetamide, and N-methyl-2-pyrrolidone. These polyamides had glass transition temperatures between 219 and 264 °C, and 10% weight loss temperatures in the range of 394–436 °C and around 50% residue at 700 °C in nitrogen atmosphere. The polyamides underwent a [2 + 2] photocycloaddition reaction upon UV light irradiation both in solution and film state in the absence of a photoinitiator or photosensitizer. The polymer films became insoluble in solvents as a result of the crosslinking .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号