首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oligomeric poly(styrene‐co‐acrylonitrile) quaternary ammonium salts were prepared through reactions of trimethylamine with corresponding poly(styrene–acrylonitrile–vinyl benzyl chloride)s, which were synthesized by the free‐radical polymerization of a mixture of styrene, acrylonitrile, and vinyl benzyl chloride. Then, oligomeric poly(styrene‐co‐acrylonitrile)‐modified clays were prepared through the cation exchange of the sodium ions in the clay with the corresponding poly(styrene‐co‐acrylonitrile) quaternary ammonium salts. The poly(styrene–acrylonitrile–vinyl benzyl chloride)s, poly(styrene‐co‐acrylonitrile) quaternary ammonium salts, and their clay complexes were characterized with infrared spectroscopy, gel permeation chromatography, thermogravimetric analysis, proton nuclear magnetic resonance, X‐ray diffraction, and transmission electron microscopy. X‐ray diffraction and transmission electron microscopy studies showed that these novel clay complexes were well intercalated. Furthermore, thermogravimetric analysis data indicated that this series of polymerically modified clays had high enough thermal stability for nanocomposites by melt blending. The thermal treatment of one of these novel clays at 250°C under nitrogen was also conducted. Solubility and infrared studies of this thermally treated clay complex revealed that a novel polyimine/enamine structure clay complex had been formed in the gallery of the clay. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

2.
The oligomeric poly(styrene‐acrylamide‐vinylbenzylchloride) (P(St‐AM‐VBC)) quaternary ammonium salts have been prepared from the reactions of trimethylamine with the corresponding P(St‐AM‐VBC)s, which were synthesized by free‐radical polymerization of a mixture of styrene, acrylamide, and vinylbenzylchloride. Then the swelling tunable oligomeric poly(styrene‐co‐acrylamide) modified clays have been prepared through cation exchange of the sodium ions in the clay with the corresponding P(St‐AM‐VBC) quaternary ammonium salts. The P(St‐AM‐VBC) and its modified clays have been characterized by infrared spectra (IR), gel permeation chromatography (GPC), thermogravimetric analysis (TGA), proton nuclear magnetic resonance (1H NMR), X‐ray diffraction (XRD), and transmission electron microscopy (TEM). The solvent‐swelling capacity of poly(styrene‐co‐acrylamide) modified clays have also been tested, and the experimental results have indicated that these clays are novel swelling tunable organic clays. XRD and TEM studies have shown that these novel swelling tunable clays are well‐intercalated or exfoliated. Furthermore, TGA analysis shows that these polymerically modified clays have high thermal stability for nanocomposites by melt blending. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

3.
Narrowly distributed poly (styrene‐co‐(4‐vinylpyridine)) microspheres are facilely prepared by a soap‐free emulsion polymerization, and their structures and properties are investigated by TEM, FTIR spectra, DSC, and DLS, respectively. The sizes and glass transition temperatures of the polymeric spheres increase with an increase of 4‐vinylpyridine in the reactive system. In addition, these polymeric spheres show good stability in water and a series of organic solvents due to their crosslinked structures. When poly(styrene‐co‐(4‐vinylpyridine)) microspheres are obtained in the reactive system where the weight ratio of 4‐vinyl pyridine to styrene is less than 4/6, they can be well dispersed in water as well as in organic solvents such as ethanol, toluene and DMF, and show obvious pH sensitive and organic solvent‐sensitive characteristics. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

4.
The hydrogen bonding and miscibility behaviors of poly(styrene‐co‐methacrylic acid) (PSMA20) containing 20% of methacrylic acid with copolymers of poly(styrene‐co‐4‐vinylpyridine) (PS4VP) containing 5, 15, 30, 40, and 50%, respectively, of 4‐vinylpyridine were investigated by differential scanning calorimetry, thermogravimetric analysis (TGA), and Fourier transform infrared spectroscopy (FTIR). It was shown that all the blends have a single glass transition over the entire composition range. The obtained Tgs of PSMA20/PS4VP blends containing an excess amount of PS4VP, above 15% of 4VP in the copolymer, were found to be significantly higher than those observed for each individual component of the mixture, indicating that these blends are able to form interpolymer complexes. The FTIR study reveals presence of intermolecular hydrogen‐bonding interaction between vinylpyridine nitrogen atom and the hydroxyl of MMA group and intensifies when the amount of 4VP is increased in PS4VP copolymers. A new band characterizing these interactions at 1724 cm−1 was observed. In addition, the quantitative FTIR study carried out for PSMA20/PS4VP blends was also performed for the methacrylic acid and 4‐vinylpyridine functional groups. The TGA study confirmed that the thermal stability of these blends was clearly improved. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

5.
An electrostatic self‐assembly technique was applied to prepare ion complex polymer layers on polyacrylonitrile with acrylic acid segments {poly(acrylonitrile‐co‐acrylic acid) [P(AN‐co‐AA)]}. For the ionic complex layers, quaternary ammonium salts, such as cetyl trimethyl ammonium chloride (CTAC) and tetramethyl ammonium chloride (TMAC), were used as cationic species, and also, poly(acrylic acid) (PAA) was used as an anionic species. These cationic and anionic species were self‐assembled alternately on the surface of the P(AN‐co‐AA) membrane. Fourier transform infrared spectroscopy, AFM, and water contact angle measurements of the membrane surface were used to confirm the formation of the multilayer composites on the P(AN‐co‐AA). The permeabilities of water and macromolecules of different molecular weights were evaluated by a membrane filtration technique. The values of permeability strongly depended on the formation layer by layer of these ion composites on the base P(AN‐co‐AA). Through the measurement of the values of the contact angle of water, it was clear that surface nature of the base membrane treated by CTAC or TMAC and PAA dramatically changed. We concluded that such an electrostatic self‐assembly technique is useful for the preparation of multicomposite layers to modify the surface of base P(AN‐co‐AA) membranes. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

6.
Propylene random copolymer (PPR)/styrene‐ethylene‐butylene‐styrene block copolymer (SEBS)/compatibilizer/organic‐montmorillonite (OMMT) quaternary nanocomposites and PPR/compatibilizer/OMMT ternary nanocomposites were prepared via two‐stage melt blending and influences of compatibilizers, maleic anhydride (MA) grafted styrene‐ethylene‐butylene‐styrene copolymer (SEBS‐g‐MA), poly(octene‐co‐ethylene) (POE‐g‐MA), or propylene block copolymers (PPB‐g‐MA), on rheology and mechanical properties of the nanocomposites were investigated. The results of X‐ray diffraction measurement and transmission electron microscopy observation showed that OMMT layers were mainly intercalated in the nanocomposites except for the mainly exfoliated structure in the quaternary nanocomposites using POE‐g‐MA as compatibilizer. The nanocomposites exhibited pseudo‐solid like viscoelasticity in low frequencies and shear‐thinning in high shear rates. As far as OMMT dispersion was concerned, POE‐g‐MA was superior to SEBS‐g‐MA and PPB‐g‐MA, which gives rise to the highest viscosities in both the ternary and quaternary nanocomposites. The quaternary nanocomposites containing POE‐g‐MA were endowed with balanced toughness and rigidity. It was suggested that a suitable combination of compatibilizer and SEBS was an essentially important factor for adjusting the OMMT dispersion and distribution, the rheological and mechanical performances of the nanocomposites. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

7.
This study describes the effect of antibacterial activity of newly reported five different novel insoluble bead‐shaped polymer‐supported multiquaternary ammonium salts (PM quats) viz., bis‐quat, tris‐quat (2 Nos.), tetrakis‐quat, hexakis‐quat containing two, three, four, and six quaternary ammonium groups, respectively. The presence of number of quaternary ammonium groups in each salt was established already through Fourier‐transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy, and chloride ion analyzes. The antibacterial activities of these five different PM quats against three different bacteria viz., Staphylococcus aureus, Klebsiella pneumoniae, and Pseudomonas aeruginosa were investigated by serial dilution and spread plate method and compared the same with a monoquat containing single quaternary ammonium group. The extent of antibacterial activity has been measured in terms of colony forming units (CFU) at different time intervals. The observed results show that all the PM quats exhibited excellent‐antibacterial activity against each bacterium. On the basis of the CFU values, the antibacterial activity was found to increase from bis‐quat to hexakis‐quat, which reveals that the activity of PM quats increases with increase in the number of quaternary ammonium groups. The mechanism of interaction of quats with bacterial cytoplasmic membrane has been explained as an adsorption‐like phenomenon. The reusability of highly active hexakis‐quat against Staphylococcus aureus was studied and the activity was found to reduce after first cycle. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

8.
Amphiphilic copolymer microspheres of poly(styrene‐co‐4‐vinylpyridine) were prepared by dispersion polymerization in an alcohol/water medium. The synthesis of poly(styrene‐co‐4‐vinylpyridine) microparticles was successfully carried out, and the latexes had a spherical morphology with good monodispersity. The degree of conversion in the early stage of polymerization decreased with increasing 4‐vinylpyridine (4VP) monomer content, but the final conversions were similar (>95%). The copolymerization rate decreased with increasing 4VP content, and a broad particle size distribution was observed with 20 wt % 4VP because of the prolonged nucleation time. With the 4VP concentration increasing, the molecular weight of the copolymer microspheres decreased, and the glass‐transition temperature of the copolymers increased; this indicated that all the copolymers were random and homogeneous. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

9.
Poly(styrene‐co‐methacrylic acid) (PSMA) and poly(styrene‐co‐4‐vinylpyridine) (PS4VP) of different compositions were prepared and characterized. The phase behavior of these copolymers as binary PSMA/PS4VP mixtures or with poly(2,6‐dimethyl‐1,4‐phenylene oxide) (PPO) as PPO/PSMA or PPO/PS4VP and PPO/PSMA/PS4VP ternary blends was investigated by differential scanning calorimetry (DSC). This study showed that PPO was miscible with PS4VP containing up to 15 mol % 4‐vinylpyridine (4VP) but immiscible with PS4VP‐30 (where the number following the hyphen refers to the percentage 4VP in the polymer) and PSMA‐20 (where the number following the hyphen refers to the percentage methacrylic acid in the polymer) over the entire composition range. To examine the morphology of the immiscible blends, scanning electron microscopy was used. Because of the hydrogen‐bonding specific interactions that occurred between the carboxylic groups of PSMA and the pyridine groups of PS4VP, chloroform solutions of PSMA‐20 and PS4VP‐15 formed interpolymer complexes. The obtained glass‐transition temperatures (Tg's) of the PSMA‐20/PS4VP‐15 complexes were found to be higher than those calculated from the additivity rule. Although, depending on the content of 4VP, the shape of the Tg of the PPO/PS4VP blends changed from concave to S‐shaped in the case of the miscible blends, two Tg were observed with each PPO/PS4VP‐30 and PPO/PS4VP‐40 blend. The thermal stability of the PSMA‐20/PS4VP‐15 interpolymer complexes was studied by thermogravimetry. On the basis of the obtained results, the phase behavior of the ternary PPO/PSMA‐20/PS4VP‐15 blends was investigated by DSC. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

10.
《Polymer Composites》2017,38(6):1127-1134
Polymericaly modified clays that contain an oligomeric poly(styrene‐co‐chloromethyl styrene) ammonium salt have been prepared and used to preparation of polystyrene (PS) nanocomposites. First, PS and poly(styrene‐co‐chloromethyl styrene) [P(St‐co‐CMSt)] were synthesized by nitroxide mediated living free radical polymerization (NMRP) by TEMPO iniferter .Then the copolymer was coupled with N, N‐dimethyl hexadecyl amine to prepare polymeric modifier by anion exchange of chlorine group of chloromethyl styrene (CMSt) by quaternary amine. The synthesized polymeric modifier was mixed with nanoparticle of silica to change the property of clay surface from hydrophilic to hydrophobic via cation exchange of Na+ with alkylammonium ions. For synthesizing of nanocomposites, we used polymericaly modified montmorillonite and PS that was synthesized by NMRP technique. Intercalated nanocomposites and in some cases, exfoliated or mixed intercalated/exfoliated nanocomposites of all of these polymers have been produced by solution blending method. The prepared materials were characterized by X‐ray diffraction, Transmission electron microscopy, Fourier‐transform infrared, 1H nuclear magnetic resonance, and gel permeation chromatography techniques. Effect of layered silicates on thermal properties and glass transition temperature of PS was investigated using TGA and DSC techniques. POLYM. COMPOS., 38:1127–1134, 2017. © 2015 Society of Plastics Engineers  相似文献   

11.
Antibacterial polyvinyl chloride (PVC) materials have drawn considerable attention since their wide application in medical devices. The objective of this study is to develop a novel quaternary ammonium cationic vinyl chloride copolymer, which can be potentially used as antibacterial additive in PVC matrix. Initially, the low average-number molecular weight poly[(vinyl chloride)-co-(vinyl chloroacetate)] (PVC-co-PVCA) is synthesized by precipitation copolymerization. Subsequently, quaternary ammonium cationic moieties with different lengths of alkyl chains are introduced into the copolymers via quaternization reaction between alkyl-dimethyl tertiary amines with acyl chloride groups. The successful synthesis of PVC-co-PVCA and quaternarized copolymers are carefully confirmed by Fourier transform infrared spectroscopy, nuclear magnetic resonance (1H NMR), and x-ray photoelectron spectroscopy. The antibacterial behaviors of the quaternarized copolymers and its blends with PVC are investigated. The results reveal that all the PVC blends containing at least 5% by weight of quaternarized copolymer have superior bacteriostasis ratio (>99.6%) against both Escherichia coli (E.coli) and Staphylococcus aureus (S. aureus) due to the incorporation of quaternary ammonium groups. Meanwhile, the cationic copolymer exhibits excellent antifouling and much lower migration rate (<0.4%). These interesting consequences endow the quaternarized copolymers as alternative antibacterial agents possess a great deal of potential for use in PVC materials.  相似文献   

12.
The aim of the study was to investigate the synthesis of a copolymer bearing cyclic carbonate and its miscibility with styrene/acrylonitrile copolymer (SAN) or poly(vinyl chloride) (PVC). (2‐Oxo‐1,3‐dioxolan‐4‐yl)methyl vinyl ether (OVE) as a monomer was synthesized from glycidyl vinyl ether and CO2 using quaternary ammonium chloride salts as catalysts. The highest reaction rate was observed when tetraoctylammonium chloride (TOAC) was used as a catalyst. Even at the atmospheric pressure of CO2, the yield of OVE using TOAC was above 80% after 6 h of reaction at 80°C. The copolymer of OVE and N‐phenylmaleimide (NPM) was prepared by radical copolymerization and was characterized by FTIR and 1H‐NMR spectroscopies and differential scanning calorimetry (DSC). The monomer reactivity ratios were given as r1 (OVE) = 0.53–0.57 and r2 (NPM) = 2.23–2.24 in the copolymerization of OVE and NPM. The films of poly(OVE‐co‐NPM)/SAN and poly(OVE‐co‐NPM)/PVC blends were cast from N‐dimethylformamide. An optical clarity test and DSC analysis showed that poly(OVE‐co‐NPM)/SAN and poly(OVE‐co‐NPM)/PVC blends were both miscible over the whole composition range. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 1809–1815, 2000  相似文献   

13.
As a biodegradable functional polymer, poly[(sodium acrylate)‐co‐(4‐vinylpyridine)] [P(SA‐co‐4VP)] containing a small amounts of 4‐vinylpyridine groups were prepared and their biodegradability, dispersity, and complex performance were analyzed. The polymers can be useful as detergent builders and dispersants. It was found that the biodegradation of P(SA‐co‐4VP) was more conspicuous when content of the 4‐vinylpyridine in the copolymer was larger. This indicates that the 4‐vinylpyridine, which acts as biodegradable segments, should be incorporated into the polymer main chain in such a manner that they are digested by activated sludge. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 1953–1957, 1999  相似文献   

14.
Well defined poly (styrene‐co‐methylstyrene) grafted polyaniline/organo‐modified MgAl layered double hydroxide (LDH) was produced through solution intercalation method. After LDH nanoparticles were modified by the anion exchange reaction of MgAl (Cl) LDH with sodium dodecyl benzene sulfonate, Poly (styrene‐co‐methylstyrene) copolymers were synthesized by “living” free radical polymerization and then brominated with N‐bromosuccinimide. Afterwards, 1,4‐phenylenediamine was linked to brominated copolymers and prepared functionalized copolymer with amine. Poly (St‐co‐MSt)‐g‐PANI, has been synthesized by adding solution of ammonium persulfate and p‐toluenesufonic acid in DMSO solvent. Finally, Poly (styrene‐co‐methylstyrene) grafted‐Polyaniline/LDH nanocomposites were prepared by solution intercalation method. Characterization of these well‐defined nanocomposites included FT‐IR, gel permeation chromatography, thermogravimetric analysis, differential scanning calorimeter, transmission electron microscopy, and X‐ray diffraction. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011.  相似文献   

15.
Crosslinked poly (4‐vinylpyridine)‐supported azide ion was used as an effective azidating agent for deazodination of stable arenediazonium salts under solvent‐free conditions in high yields. The diazotization of aromatic amines was prepared by grinding the combination of an aromatic amine, sodium nitrite (NaNO2), p‐toluene sulfonic acid (p‐TsOH), and 0.2 mL H2O in a mortar. Grinding was continued for deazodination–azidation of the obtained relatively stable diazonium salts, with addition of crosslinked poly (4‐vinylpyridine) supported azide ion to obtain the corresponding aryl azides. The spent polymeric reagents can usually be removed and regenerated. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

16.
Functional polymer modified carbon black (CB) pigment (P‐(DMC‐co‐CHPMA)‐g‐MPTS/CB) with reactive epoxy and quaternary ammonium groups was designed and prepared via a thiol‐ene click chemistry reaction, and its dispersion ability in the aqueous phase, as well as its colouring and anti‐bacterial properties for cotton fabrics, were investigated. In considering both dispersion ability and reactive ability to cotton fabric, the mole ratio of the monomers (methacrylatoethyl trimethyl ammonium chloride [DMC] and 3‐chloro‐2‐hydroxypropyl methacrylate [CHPMA]) was discussed. Morphology and chemical properties of P‐(DMC‐co‐CHPMA)‐g‐MPTS/CB were tested by scanning electron microscopy, transmission electron microscopy, thermogravimetric analysis and X‐ray photoelectron spectroscopy, resulting in a weight content of copolymer (DMC‐co‐CHPMA) in P‐(DMC‐co‐CHPMA)‐g‐MPTS/CB of ca. 18%. P‐(DMC‐co‐CHPMA)‐g‐MPTS/CB was fixed onto cotton fabric via a nucleophilic‐substituted reaction between reactive epoxy groups on the CB surface and the hydroxyl groups of cotton fabric, which endowed good fastness to cotton fabric without either a fixing or an adhesive agent. Also, coloured cotton fabric demonstrated excellent anti‐bacterial activity towards Staphylococcus aureus and Escherichia coli O157:H7.  相似文献   

17.
A facile methodology to modify polystyrene, to incorporate alkali soluble hydroxy groups, is reported. Polystyrene of well‐defined number‐average molecular weights in the range of 3000 to 50,000 were prepared by suspension polymerization at 80°C by varying the relative mole ratio of carbon tetrachloride, used as chain transfer agent. Polystyrenes were acetylated; the acetyl groups were converted to acetoxy groups, by Baeyer–Villiger oxidation, and hydrolyzed in a nonaqueous alkaline medium to generate hydroxy groups. The extents of modifications were monitored by infrared spectroscopy. The glass transition temperatures of poly(4‐acetylstyrene‐co‐styrene), poly(4‐acetylstyrene‐co‐4‐acetoxystyrene‐co‐styrene), and poly(4‐hydroxystyrene‐co‐4‐acetylstyrene‐co‐styrene) were 107, 134, and 142°C, respectively. The polymers were evaluated in photoresist formulations. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 3192–3201, 2004  相似文献   

18.
The phase behavior of blends containing N‐alkylitaconamic acid‐co‐styrene copolymers (NAIA‐co‐S) with poly(N‐vinyl‐2‐pyrrolidone) (PVP) of two different weight average molecular weights (M w ), poly(2‐vinylpyridine) (P2VPy) and poly(4‐vinylpyridine) (P4VPy), was analyzed by differential scanning calorimetry and Fourier transform infrared spectroscopy. Copolymers containing 80% S are miscible with PVP10, PVP24, and P4VPy over the whole range of composition. In the case of blends with P2VPy, miscibility is observed only for the first three members of the series, i.e., NEIA‐co‐S, NPIA‐co‐S, and NBIA‐co‐S. For copolymers containing hexyl to dodecyl moieties, phase separation is observed in blends with P2VPy. Copolymers containing 50% S are miscible over the whole range of composition irrespective of the homopolymer and the length of the side chain of the itaconamic moiety of the copolymer. This behavior is interpreted in terms of steric hindrance, in the sense that the copolymers with long side chains are not able to interact with the nitrogen of P2VPy because of the position in the aromatic ring. The interactions between copolymers and homopolymers are discussed in terms of specific interactions like hydrogen bonds between the itaconamic moiety and the different functional groups of the homopolymers, together with the hydrophobic interaction, which cannot be disregarded. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 2512–2519, 2006  相似文献   

19.
A cationic poly(methyl iodide quaternized styrene–N,N‐dimethylaminopropylmaleamidic acid) copolymer was synthesized through amidoacidification reaction of styrene‐maleic anhydride copolymer with N,N‐dimethylaminopropylamine (ring‐opening reaction). Its properties in various aqueous salt solutions and pH solutions were studied by measurements of reduced viscosity and intrinsic viscosity. The results indicated that the reduced viscosity and intrinsic viscosity of this cationic polyelectrolyte were related to the type and concentration of the added salts and the results also showed a contrary tendency in some salts with monovalent acid groups to polyelectrolyte. At the same time, some salt ions were observed to strongly attract the quaternary ammonium group of the cationic polymeric side chain and resulted in agglomeration of the polymers. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 1619–1626, 2001  相似文献   

20.
J. Li  C.R. Sun  X.Q. Zhang 《Polymer Composites》2012,33(10):1737-1749
Chemical modification of poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBV) with glycidyl methacrylate (GMA) monomer, followed by reactively blending with end‐capped poly(propylene carbonate) (PPC) (50 wt%) was carried out during melt processing with dicumyl peroxide (DCP) initiation. The two kinds of graft copolymers of PHBV‐g‐GMA and PHBV‐g‐PPC were extracted with Soxhlet's apparatus, respectively. These grafting reaction mechanisms were proposed and the presence of grafting copolymers was confirmed by weight analysis, FTIR and NMR. The methyne carbon of GMA is confirmed to attach to quaternary carbon of the PHBV backbone. The epoxy groups in the copolymer of PHBV‐g‐GMA were capable to react with the carboxyl groups of end‐capped PPC, resulting in the formation of PHBV‐g‐PPC copolymer in situ. Their thermal properties and morphology were also characterized by DSC, WAXD, POM, and AFM. It revealed that after GMA grafting, the degradation of PHBV decreased and the nucleation of PHBV improved. The crystallinity degree, spherulites dimension and phase segregation between the two macromolecules decreased after PHBV grafted with PPC. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号