首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Distribution and density of two introduced dreissenid species of mollusks, the zebra mussel Dreissena polymorpha and quagga mussel D. bugensis, were monitored in the Inner Bay at Long Point, Lake Erie, 1991–1995. Since populations of certain waterfowl species have been reported to alter their dietary intake and migration patterns in response to the ready availability of zebra mussels, the percent occurrence of zebra mussels in the diet of 12 duck species (552 birds) was studied concurrently, and several spring and fall aerial waterfowl surveys were flown between 1986 and 1997 (n = 75), to document changes in duck populations at Long Point. The first reproductive population of zebra mussels on the bay most likely appeared in 1990. After an initial rapid increase in density and colonization of the Inner Bay, zebra mussels began to steadily and consistently decline in absolute numbers, density per station and occupied area. Mean density per station in 1995 was 70% less than in 1991, the first year of rapid colonization, and 67% less than in 1992, the year of peak abundance in the bay (P < 0.05). Occupied area peaked in 1992, with 80% of sampling stations supporting mussels; the following 3 years showed consistent declines in the proportion of stations supporting mussels: 1993 = 75.9%, 1994 = 63.2% and 1995 = 57.1% (P < 0.05). Mussels in size class 0 to 5 mm were most abundant in 1991, 1993 and 1995, whereas those in size class 6 to 10 mm predominated in 1992 and 1994 (P < 0.05). Very few mussels over 15 mm were found. Lesser Scaup Aythya affinis (75.4 to 82.5 % occurrence), Greater Scaup A. marila (66.7 to 81.5 % occurrence), and Bufflehead Bucephala albeola (46.7 to 60 % occurrence) were the only three waterfowl species that consistently incorporated zebra mussels in their diet, and the mussel decline coincided with a substantial increase in the populations of these species at Long Point. Waterfowl days for Lesser and Greater Scaup combined increased rapidly from 38,500 in 1986 (prior to the zebra mussel colonization of Long Point) to 3.5 million in 1997 (P = 0.012). Bufflehead days increased from 4,700 to 67,000 during the same period (P = 0.001). Oligotrophication of Lake Erie, through reduced plankton and chlorophyll concentrations, has occurred since the invasion of zebra mussels, probably a result of filtering activities of introduced mussels. While a reduction in plankton availability may have contributed to the zebra mussel decline, high rates of waterfowl predation probably had the most substantial effect on mussel densities at Long Point. Waterfowl predation also probably influenced the size structure of the zebra mussel population, since waterfowl are size-selective foragers, and increased water clarity would have facilitated their ability to select preferred medium and large size classes of mussels. Quagga mussels, which were first detected in 1993, experienced a decline in both density and area occupied over the next two years. Quagga mussels rarely attached to soft substrates, and their decline is possibly related to the decline of suitable hard substrates, such as zebra mussels, as well as to predation by waterfowl.  相似文献   

2.
Dreissenid mussels are aggressive invasive species that are continuing to spread across North America and co-occur in the same waterbodies with increasing frequency, yet the outcome and implications of this competition are poorly resolved. In 2009 and 2015, detailed (700 + sample sites) surveys were undertaken to assess the impacts of invasive dreissenid mussels in Lake Simcoe (Ontario, Canada). In 2009, zebra mussels were dominant, accounting for 84.3% of invasive mussel biomass recorded. In 2015, quagga mussels dominated (88.5% of invasive mussel biomass) and had expanded into profundal (> 20 m water depth) sites and onto soft (mud/silt) substrates with a mean profundal density of 887 mussels/m2 (2015) compared to ~ 39 mussels/m2 in 2009. Based on our annual benthos monitoring, at a subset of ~ 30 sites, this shift from zebra to quagga mussels occurred ~ 2010 and is likely related to a population decline of zebra mussels in waterbodies where both species are present, as recorded elsewhere in the Great Lakes Region. As the initial invasion of dreissenid mussels caused widespread ecological changes in Lake Simcoe, we are currently investigating the effects this change in species dominance, and their expansion into the profundal zone, will have on the lake; and our environmental management strategies. Areas of future study will include: changes in the composition of benthos, fish, or phytoplankton communities; increased water clarity and reduction of the spring phytoplankton bloom; energy/nutrient cycling; and fouling of anthropogenic in-lake infrastructures (e.g. water treatment intakes) built at depths > 25 m to avoid previous zebra mussel colonization.  相似文献   

3.
Lake Erie has the longest history of colonization by both Dreissena polymorpha and Dreissena rostriformis bugensis in North America and is therefore optimal for the study of long-term dynamics of dreissenid species. In addition, the morphometry of Lake Erie basins varies dramatically from the shallow western to the deep eastern basin, making this waterbody a convenient model to investigate patterns of Dreissena distribution, as well as interspecies interactions among dreissenids. We compare our data on the distribution, density and wet biomass of both dreissenid species in Lake Erie collected in 2009 and 2011–2012 with previous data. We found that Dreissena spp. distribution in Lake Erie varied depending on the time since the initial invasion, collection depth, and lake basin. In 2009–2012, zebra mussels were smaller than in 1992 and were consistently smaller than quagga mussels. During 2009–2012, quagga mussels were found at all depths and in all basins, while zebra mussels were common in the western basin only, and in the central and eastern basins were limited to shallow depths, resulting in an almost complete replacement of D. polymorpha with D. rostriformis bugensis. In the shallowest western basin of Lake Erie, zebra mussels represented > 30% of the combined dreissenid density even after more than 20 years of coexistence, providing strong evidence that, even in lakes as large as Lake Erie (or at least its western basin), D. polymorpha may sustain a significant presence for decades without being displaced by quagga mussels.  相似文献   

4.
Zebra mussels had significant direct and possible indirect effects on heterotrophic bacteria in two contrasting sites in Saginaw Bay. At a eutrophic site in the inner portion of Saginaw Bay, mussels fed directly on bacterial-sized particles and had a negative impact on bacterial abundances. Mussels removed large bacteria (> 0.9 μm) more effectively than small bacteria at this site. Individual mussels cleared from 37–89 ml per day. Results using different sizes of fluorescent microspheres suggest that zebra mussels have a lower limit for particle size removal that is less than 0.4 μm. Contradictory to inner bay results, mussels at an outer bay oligotrophic site had a positive impact on heterotrophic bacterial abundance, perhaps as a result of indirect effects, such as nutrient or organic carbon excretion by the mussels. Differences in the impact of mussels on the bacterial communities of the inner bay and outer bay probably result from differences in trophic state and bacterial community structure. A hypothesized smaller size of bacteria at outer bay sites may enable them to escape heavy predation pressure from mussels and the high rates of mussel nutrient excretion may facilitate their growth in these nutrient depleted conditions.  相似文献   

5.
Invasive quagga mussels have recently replaced zebra mussels as the dominant filter-feeding bivalves in the Great Lakes. This study examined microzooplankton (i.e., grazers < 200 μm) and their trophic interactions with phytoplankton, bacteria, and bivalve mussels in Saginaw Bay, Lake Huron, following the zebra to quagga mussel shift. Microzooplankton distribution displayed strong spatial and temporal variability (1.73–28.5 μg C/L) relative to phytoplankton distribution. Ciliates were the dominant component, especially in the spring and early summer. Rotifers and dinoflagellates increased toward late summer/fall in the inner and outer parts of the bay, respectively. Microzooplankton grazing matched bacterial growth rates and removed ca. 30% of the phytoplankton standing stock in the < 100 μm size fraction per day. The greatest herbivory occurred at the site dominated by colonial cyanobacteria. Microzooplankton, which comprised < 4% of the quagga mussels prey field (i.e. available prey), contributed 77% and 34% to the quagga carbon-based diet during Microcystis and diatom blooms, respectively. Feeding on microzooplankton could buffer mussels during lean periods, or supplement other consumed resources, particularly during noxious cyanobacterial blooms. The results of this study demonstrate that microzooplankton are a resilient and critical component of the Saginaw Bay ecosystem.  相似文献   

6.
Submersed macrophyte communities and turbidity near shore were measured from 1991 to 1993 to determine if more light resulting from colonization of zebra mussels (Dreissena polymorpha Pallas) into Saginaw Bay in 1990 corresponded with changes in macrophyte distribution. Turbidity was sampled along five transects distributed at intervals perpendicular to the perimeter of inner Saginaw Bay to monitor changes in light available to plants in Saginaw Bay. Vegetation was sampled in July along these transects to determine the distribution and composition of the macrophyte communities each summer. We also measured the maximum depth of colonization and the area of plant coverage by use of 31 transects evenly distributed around Saginaw Bay in August. Turbidity decreased (P  0.097) at transects in northern littoral regions from 1991 to 1993 over submersed plant communities and uncolonized sediments, but not in southern littoral regions. The relative abundance of submersed macrophytes increased (P  0.0001) at all transects from 1991 to 1993, especially at transects where turbidity decreased significantly. Maximum depth of colonization (2.0 m) and the area of macrophyte coverage (101.3 km2) increased in Saginaw Bay, especially in the northwestern littoral region of the bay. Macrophytic chlorophytes, charophytes, and Vallisneria americana increased (P  0.003) in relative abundance most at transects where turbidity decreased significantly. These results demonstrate that even in a large well-mixed lacustrine environment, zebra mussels have the capacity to reduce turbidity sufficiently to allow submersed macrophytes to expand their distribution and abundance.  相似文献   

7.
Dreissenid mussels have been regarded as a “dead end” in Great Lakes food webs because the degree of predation on dreissenid mussels, on a lakewide basis, is believed to be low. Waterfowl predation on dreissenid mussels in the Great Lakes has primarily been confined to bays, and therefore its effects on the dreissenid mussel population have been localized rather than operating on a lakewide level. Based on results from a previous study, annual consumption of dreissenid mussels by the round goby (Neogobius melanostomus) population in central Lake Erie averaged only 6 kilotonnes (kt; 1 kt = one thousand metric tons) during 1995–2002. In contrast, our coupling of lake whitefish (Coregonus clupeaformis) population models with a lake whitefish bioenergetics model revealed that lake whitefish populations in Lakes Michigan and Huron consumed 109 and 820 kt, respectively, of dreissenid mussels each year. Our results indicated that lake whitefish can be an important predator on dreissenid mussels in the Great Lakes, and that dreissenid mussels do not represent a “dead end” in Great Lakes food webs. The Lake Michigan dreissenid mussel population has been estimated to be growing more than three times faster than the Lake Huron dreissenid mussel population during the 2000s. One plausible explanation for the higher population growth rate in Lake Michigan would be the substantially higher predation rate by lake whitefish on dreissenid mussels in Lake Huron.  相似文献   

8.
The total phosphorus data from 1968 to 1982 in the Lake Erie central basin trend study area was analyzed to determine in-lake responses to the Great Lakes Water Quality Agreement (GLWQA) phosphorus loading reduction program. The available data for each year were divided into five subsets according to time of year and depth of the water column. Each data subset was regressed as a function of time and total phosphorus loadings to Lake Erie. Linear regression analysis indicates that the in-lake phosphorus concentrations have been decreasing and are well correlated with decreased loadings to the lake. The highest rate of phosphorus decrease with time (0.56 ± 0.10 mg · m−3 yr−1) was obtained by using epilimnetic concentrations from April to December for each year. This data subset also shows the best correlation with decreasing phosphorus loadings. From 1968 to 1982, Lake Erie offshore phosphorus concentrations responded to decreasing external phosphorus loadings at a rate of 0.45 ± 0.09 mg · m−3 per thousand metric tonnes.  相似文献   

9.
A field study was conducted in the lower Great Lakes to assess changes in spatial distribution and population structure of dreissenid mussel populations. More specifically, the westward range expansion of quagga mussel into western Lake Erie and toward Lake Huron was investigated and the shell size, density, and biomass of zebra and quagga mussel with depth in southern Lake Ontario in 1992 and 1995 were compared. In Lake Erie, quagga mussel dominated the dreissenid community in the eastern basin and zebra mussel dominated in the western basin. In southern Lake Ontario, an east to west gradient was observed with the quagga mussel dominant at western sites and zebra mussel dominant at eastern locations. Mean shell size of quagga mussel was generally larger than that of zebra mussel except in western Lake Erie and one site in eastern Lake Erie. Although mean shell size and our index of numbers and biomass of both dreissenid species increased sharply in southern Lake Ontario between 1992 and 1995, the increase in density and biomass was much greater for quagga mussels over the 3-year period. In 1995, zebra mussels were most abundant at 15 to 25 m whereas the highest numbers and biomass of quagga mussel were at 35 to 45 m. The quagga mussel is now the most abundant dreissenid in areas of southern Lake Ontario where the zebra mussel was once the most abundant dreisenid; this trend parallels that observed for dreissenid populations in the Dneiper River basin in the Ukraine.  相似文献   

10.
Sediment traps were installed at individual index stations in the western basin of Lake Erie and the Mississauga (central) basin of Lake Ontario, and refurbished seasonally during the period 1997–2000. In Lake Ontario, sediment down flux rates and corresponding contaminant down flux rates were highest in winter and increased with depth due to the influence of resuspended bottom sediments. Sediment down flux rates in western Lake Erie (22 to 160 g m−2 d−1) were far greater than in Lake Ontario (0.19–3.0 g m−2 d−1). Suspended material in western Lake Erie was characterized as predominately resuspended bottom sediments; down flux rates were roughly 5- to 10-fold higher in spring and fall, compared to summer. Suspended sediment concentrations of PCBs and other organochlorine contaminants, represented by both annual means and individual seasonal values, were higher in Lake Ontario throughout the duration of the study, compared to Lake Erie. The mean annual concentration of PCBs in suspended sediments over the period 1997–2000 was 330 ng/g in western Lake Erie and 530 ng/g in Lake Ontario. Based on a comparison with historical data from Lake Ontario, mean contaminant concentrations over the period 1997–2000 for PCBs, hexachlorobenzene, and mirex corresponded to decreases of 38%, 74%, and 40%, respectively, since the mid-1980s. Corresponding down flux rates for PCBs, hexachlorobenzene, and mirex decreased by approximately 70%, 90%, and 80%, respectively, since the 1980s.  相似文献   

11.
The demography of the zebra mussel (Dreissena polymorpha) and its impacts on native fingernail clams (Sphaeriidae) in Lake Michigan near Michigan City, Indiana were studied from 1992 to 1997 at 5, 10, and 15 m depths. Zebra mussel densities ranged from 0 to 6,209/m2, and were greatest at deeper stations. Size-frequency distributions suggest that initial colonization of the Michigan City area occurred in 1991, with adults typically living for 2 to 3 years. Abundance of adult populations may be limited by the sandy habitat typical of the areas studied and the occasional high-energy wave action in the shallow (5 m) near-shore zone of this area. Densities of fingernail clam ranged from 0 to 1,312/m2 and were also greatest at deeper stations. Approximately half of the fingernail clams shells between 1 and 2 mm in size were used as substrate for attachment by juvenile and adult zebra mussels, while over 90% of the clams > 2 mm showed attachment by zebra mussels. Overall median densities of Sphaeriidae decreased from 832/m2 to 13/m2 at the 15 m depth and from 234/m2 to 0/m2 at the 10 m depth during the study. It appears that zebra mussel colonization caused a dramatic reduction of Sphaeriidae density by 1997 that may eventually result in their loss from the area.  相似文献   

12.
Dreissenid mussels are known to disrupt the base of the food web by filter feeding on phytoplankton; however, they may also directly ingest zooplankton thereby complicating their effects on plankton communities. The objective of this study was to quantify the effects of quagga mussel feeding on the composition and size structure of Lake Michigan zooplankton assemblages. Two mesocosm (six 946 L tanks) experiments were conducted in summer 2013, using quagga mussels and zooplankton collected near Beaver Island, MI, to examine the response of zooplankton communities to the presence and absence of mussels (experiment 1) and varying mussel density (experiment 2). Mesocosms were sampled daily and zooplankton taxa were enumerated and sized using microscopy and FlowCAM® imaging. In experiment 1, the presence of quagga mussels had a rapid negative effect on veliger and copepod nauplii abundance, and a delayed negative effect on rotifer abundance. In experiment 2, mussel density had a negative effect on veliger, nauplii, and copepodite abundance within 24 h. Multivariate analyses revealed a change in zooplankton community composition with increasing mussel density. Ten zooplankton taxa decreased in abundance and frequency as quagga mussel density increased: except for the rotifer Trichocerca sp., treatments with higher mussel densities (i.e., 1327, 3585, and 5389 mussels/m2) had the greatest negative effect on small-bodied zooplankton (≤ 128 μm). This study confirms results from small-scale (≤ 1 L) experiments and demonstrates that quagga mussels can alter zooplankton communities at mesoscales (~ 1000 L), possibly through a combination of direct consumption and resource depletion.  相似文献   

13.
The distribution, density, biomass and size-structure of the zebra mussel (Dreissena polymorpha) population in Lake Winnipeg were examined between 2017 and 2019. Zebra mussels have colonized most of the available hard substrate in the south basin and Narrows region, but colonization of the north basin remains low at present, even on suitable substrate. Numerical densities and shell free biomass peaked at 5530 ± 953 m?2 and 64.7 ± 57.9 g shell free dry mass m?2 respectively. The distribution appeared to be strongly limited by substrate type and availability, with further limitations on the distribution imposed by physical disturbance in shallow waters and unsuitable substrate in deeper areas of the lake. Zebra mussels <1 year old dominated the populations, and individuals >18 mm were exceedingly rare. Poor recruitment was observed at sites along the eastern side of the south basin compared to elsewhere in the lake. The proximate causes of these differences in colonization success and recruitment are not clear, but may be in part due to heterogeneous patterns of key physico-chemical environmental conditions such as calcium concentrations required for successful development of juvenile mussels and colder water temperatures in the north basin. This study provides a baseline of information on which to track further expansion of zebra mussels in Lake Winnipeg and assist efforts to develop an understanding of how zebra mussels may affect the ecology of Lake Winnipeg.  相似文献   

14.
Mills et al. (1987) developed an index of zooplankton mean size to assess the state of fish communities. The use of this index was evaluated in an assessment of the fish community structure in 1993 at nearshore and offshore sites in the three Lake Erie basins. Mills et al.’s index was developed using a 153-μm mesh net, while the samples in this study have been collected with 64-μm and 110-μm mesh size nets. Two methods were used to convert the data to 153-μm equivalent collections: (a) regression relationships based on simultaneous collections with three mesh sizes, and (b) elimination of smaller organisms that would have passed through the 153-μm mesh by determining the minimum length of inclusion (MLI). The regressions employed for the conversion of zooplankton mean length (ZML) between the nets were: ZML153 = 0.137 + 0.988 ZML110 (mm) (r2= 0.804) (n = 10) and ZML153 = 0.042 + 1.330 ZML64 (mm) (r2 = 0.931) (n = 9). The MLI that resulted in the same mean length as the 153-μm sample averaged (± 1 SE) 0.267 ± 0.016 mm (n =19).The comparison between zooplankton mean length and fish community structure in the western basin of Lake Erie in 1993 showed good agreement with Mills et al.’s index. However, the same was not true for the 1988 to 1990 data. Reasons for this discrepancy are discussed.  相似文献   

15.
The results of sediment oxygen demand (SOD) measurements for the central basin of Lake Erie, 1979, are presented. Two chambers were used. One, a triangular chamber, has a mixing velocity of 5 cm/sand gives values for SOD of 0.86 ± 0.42 gm2/d (n = 52). The second chamber, a hemispherical dome with gentle mixing, gives values of 0.32 ± 0.11 g/m2/d (n = 13). There are no significant differences in measured values between two stations, located 50 km apart, when measurements from the same chamber design are compared. There are no measurable effects of photosynthesis when daytime values are compared with nighttime values or when light and dark chambers are compared. A comparison of these two SOD values with rates observed for hypolimnetic oxygen decline in the water column shown that the value measured by the dome (0.32 gm/m2/d) is the most plausible value. It is hypothesized that the fluid mechanics of the triangular chamber do not properly emulate the hydrodynamics of the lake, causing the higher values.  相似文献   

16.
Sediment-water nitrogen fluxes and transformations were examined at two sites in Saginaw Bay, Lake Huron, as a model for sandy freshwater sediments. Substantial ammonium release rates (74 to 350 μmole NH4+/m2/h1) were observed in flow-through cores and in situ benthic chamber experiments. Sediment-water ammonium fluxes were similar at the inner and outer bay stations even though inner bay waters are enriched with nutrients from the Saginaw River. The high net flux of remineralized ammonium into the overlying water from these sandy sediments resembles typical data for marine systems (11 to 470 μmole NH4+/m2/h1) but were higher than those reported for depositional freshwater sediments (0 to 15 μmole NH4+/m2/h1; Seitzinger 1988). Addition of montmorillonite clay (ca. 1 kg dry weight/m2) to the top of the sandy cores reduced ammonium flux. Mean “steady-state” ammonium flux following clay addition was 46 ± 2 (SE) % of the initial rates as compared to 81 ± 8% of the initial rates without clay addition. Zebra mussel excretion dominanted ammonium regeneration in the inner bay where the bivalve was abundant, but addition of zebra mussel feces/psuedofeces (3.0 g dw/m2) to sediments did not increase ammonium or nitrate flux. Partial nitrification of ammonium at the sediment-water interface was suggested by removal of added 15NH4+ from lake water passing over dark sediment cores. Sediment-water fluxes of nitrogen obtained from flow-through sediment cores resembled those from in situ benthic chambers. However, extended static incubations in gas-tight denitrification chambers caused more of the regenerated nitrogen to be nitrified and denitrified than occurred with the other two measurement systems.  相似文献   

17.
We examined three decades of changes in dreissenid populations in Lake Ontario and predation by round goby (Neogobius melanostomus). Dreissenids (almost exclusively quagga mussels, Dreissena rostriformis bugensis) peaked in 2003, 13 years after arrival, and then declined at depths <90 m but continued to increase deeper through 2018. Lake-wide density also increased from 2008 to 2018 along with average mussel lengths and lake-wide biomass, which reached an all-time high in 2018 (25.2 ± 3.3 g AFTDW/m2). Round goby densities were estimated at 4.2 fish/m2 using videography at 10 to 35 m depth range in 2018. This density should impact mussel populations based on feeding rates, as indicated in the literature. While the abundance of 0–5 mm mussels appears to be high in all three years with measured length distributions (2008, 2013, 2018), the abundance of 5 to 12 mm dreissenids, the size range most commonly consumed by round goby, was low except at >90 m depths. Although the size distributions indicate that round goby is affecting mussel recruitment, we did not find a decline in dreissenid density in the nearshore and mid-depth ranges where goby have been abundant since 2005. The lake-wide densities and biomass of quagga mussels have increased over time, due to both the growth of individual mussels in the shallower depths, and a continuing increase in density at >90 m. Thus, the ecological effects of quagga mussels in Lake Ontario are likely to continue into the foreseeable future.  相似文献   

18.
Recurrent, massive cyanobacterial blooms composed mainly of the genus Microcystis indicate a broad-scale re-eutrophication of Lake Erie. In the past, ameliorating eutrophication relied on intentionally decreasing point-source tributary nutrient, especially phosphorus, loads to the lake. However, recent research has shown that tributaries load not only nutrients but also bloom-levels of phytoplankton, including Microcystis. We built on this previous work by sampling earlier in the year and in much smaller tributaries in both the Maumee and Sandusky systems. We found Microcystis wet biomasses in these tributaries averaged 3.16 mg/L (± 0.59 mg/L, one standard error of the mean) in 2009 and 3.42 mg/L (± 0.55 mg/L) in 2010. Importantly, we found Microcystis in small ditches in March, much earlier than previously observed. Microcystis biomass did not directly correspond to measured phosphorus, chlorophyll, or phycocyanin concentrations likely reflecting complexities associated with lagged physiological responses and/or non-linear growth relationships. Consequently, our findings emphasize that Microcystis blooms form a more broad-scale problem than previously documented, occurring far upstream much earlier in the year.  相似文献   

19.
To better understand zooplankton dynamics in Lake Ontario’s Toronto Harbour and adjacent coastal area (CA), we sampled zooplankton, phytoplankton, nutrients and physical parameters on six dates in 2016. Despite higher levels of nutrients, chlorophyll and primary production in the inner harbor (IH), the areas supported similar May to November zooplankton biomass (IH = 32 ± 7 and CA = 42 ± 10 mg/m3). IH values were much lower than other nutrient-enriched embayments in Lake Ontario, yet CA biomass was twice that of nearshore sites away from Toronto. Small zooplankton such as rotifers and Bosmina dominated IH; and large taxa (Daphnia, calanoids and predatory cladocerans) were more important in the CA. Daphnia, Bosmina, cyclopoids and calanoids were larger in the CA, and adult cyclopoids had higher egg ratios. This led to low annual IH production estimates for both cyclopoid and calanoid copepods. Total phosphorus and chlorophyll did not appear to regulate zooplankton biomass, but positive relationships were found with bacterial biomass in the IH and with temperature in the cool season. Atypically high fish planktivory rates likely suppressed larger IH zooplankton in 2016, allowing small, resilient Bosmina to flourish and contribute 84% of total production in the IH. Comparing 2016 data to previous zooplankton surveys revealed considerable inter-annual variation in proportions of Daphnia, Bosmina and predatory cladocerans over the 1994 to 2016 period, and the strong top-down controls observed in 2016 were not typical. Elevated microbial production may serve as an important alternate trophic pathway supporting cladoceran populations in Toronto Harbour.  相似文献   

20.
The Lake St. Clair delta (∼ 100 km2) provides an important refuge for native freshwater mussels (Unionidae) wherein 22 of the ∼ 35 historical species co-occur with invasive dreissenids. A total of 1875 live unionids representing 22 species were found during snorkeling surveys of 32 shallow (∼ 1 m) sites throughout the delta. Richness and density of unionids and zebra mussel infestation rates varied among sites from 3 to 13 unionid species, 0.02 to 0.12 unionids/m2, and < 1 to 35 zebra mussels/unionid, respectively. Zebra mussel infestation of unionids in the delta appears to be mitigated by dominant offshore currents, which limit densities of zebra mussel veligers in nearshore compared to offshore waters (13,600 vs. 28,000/m3, respectively). Glycogen concentrations in the tissues of a common and widespread species in the delta (Lampsilis siliquoidea) suggest that zebra mussels may be adversely affecting physiological condition of unionids in a portion of the Lake St. Clair delta. Physiological condition and community structure of unionids within the delta may also be influenced by differences in food quantity and quality resulting from the uneven distribution of water flowing from the St. Clair River. The delta likely supports the largest living unionid community in the lower Great Lakes and includes several species that have been listed as Endangered or Threatened in Canada and/or the state of Michigan, making it an important refuge for the conservation of native unionids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号