首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The microgelation phenomenon during the curing of unsaturated polyester resin was investigated by both static and dynamic light scattering before gelation. The results of static light scattering revealed that the polymer molecular weight increased with degree of curing. The second virial coefficient, A2, decreased slowly in the initial stage of curing and decreased dramatically at a conversion around α ∼ 8.7%, indicating a drastic decrease of compatibility between the polyesters and styrene. Two modes of the size distribution of the microgel particles during curing were observed by dynamic light scattering. The small particles consist of primary unsaturated polyester molecules. The large ones consist of microgel particles formed by linking adjacent polyester molecules. The sizes of the microgel particles increased in the initial stage of curing, then decreased slightly at a conversion of α ∼ 8.7%, which was due to the intramolecular crosslink reaction of the microgel particles. The experimental results revealed that the compatibility between polyesters and the styrene monomer became worse as the intramolecular crosslinking reaction inside the microgel particles caused a tight packing of the micro-gel molecules. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 871–878, 1998  相似文献   

2.
The behavior of phase separation during the curing reaction of unsaturated polyester (UPE) resin in the presence of low profile additive, that is, poly(vinyl acetate) (PVAc), was studied by low-angle laser light scattering (LALS) and scanning electron microscopy (SEM). The experimental results revealed that the PVAc-rich phase was regularly dispersed in the cured styrene–UPE matrix for styrene–UPE resin blended with 5 wt % of PVAc. As the PVAc content was increased higher than 10 wt %, a cocontinuous PVAc and cured styrene–UPE phase was observed for the cured systems. The LALS observations were carried out in situ at a curing temperature of 100°C; thus, the effect of the rate of exothermic heat released from curing reaction on the morphology of curing system was investigated and reported in this work. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 2413–2428, 1999  相似文献   

3.
In blends of unsaturated polyester (UP), poly (vinyl acetate) (PVAc), and styrene, a reaction‐induced phase separation occurs upon curing that is due to the crosslinking between styrene and the UP molecules. The evolution of the morphology was observed by optical microscopy on a heated stage. Light transmission was used in parallel to precisely detect the onset of phase separation and the formation of microvoids. Using Fourier transform IR spectroscopy in the same conditions, the conversions at phase separation and at microvoiding were evaluated. Phase separation occurs at a very low degree of conversion and microvoiding develops at around 60% of conversion. The final morphology of the blend was investigated by scanning electron microscopy. The relative influences of the cure temperature, the concentration in PVAc, and the molecular weight of PVAc were investigated. It was confirmed that the early stages of the reaction at high temperature determine the final morphology of the blends. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 3877–3888, 2006  相似文献   

4.
Scanning electron microscopy has been used to observe morphology in styrenated polyester resins containing poly(vinyl acetate) (PVA). Resins containing 8% PVA form composite spherical particles which occupy 35 vol% of the total material. It is concluded that these particles consist of resin sub-inclusions embedded in the continuous matrix of polyester resin. Increasing the PVA content to 16% results in a phase inversion: PVA forms the matrix, and the resin is present as spherical particles. These observations are interpreted with the aid of a ternary diagram.  相似文献   

5.
We report miscibility behavior for synthetic biodegradable aliphatic polyester (BDP) and poly(vinyl acetate) (PVAc) blends by investigating their thermal, rheological, and mechanical properties. Two separate glass transition temperature peaks for the BDP/PVAc blends proved that these blend systems are immiscible. From the rheological measurement, the shear viscosity as a function of shear rate is observed to increase with increasing PVAc content in BDP/PVAc blends, since PVAc has a relatively high molecular weight compared to BDP. Moreover, BDP blends with 10 wt % PVAc have excellent mechanical properties. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 1348–1352, 2000  相似文献   

6.
A series of poly(methyl methacrylate) (PMMA) blends have been prepared with different compositions viz., 5, 10, 15, and 20 wt % ethylene vinyl acetate (EVA) copolymer by melt blending method in Haake Rheocord. The effect of different compositions of EVA on the physico‐mechanical and thermal properties of PMMA and EVA copolymer blends have been studied. Differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA) and thermogravimetric analysis (TGA) has been employed to investigate the phase behavior of PMMA/EVA blends from the point of view of component specific interactions, molecular motions and morphology. The resulting morphologies of the various blends also studied by optical microscope. The DSC analysis indicates the phase separation between the PMMA matrix and EVA domains. The impact strength analysis revealed a substantial increase in impact strength from 19 to 32 J/m. The TGA analysis reveals the reduction in onset of thermal degradation temperature of PMMA with increase in EVA component of the blend. The optical microscope photographs have demonstrated the PMMA/EVA system had a microphase separated structure consisting of dispersed EVA domains within a continuous PMMA matrix. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

7.
M. Konno  Z.-Y. Wang  S. Saito   《Polymer》1990,31(12):2329-2332
A dynamical study was made on demixing of an immiscible polymer blend, whose specimens were prepared by solvent casting and had very finely phase separated structures in the initial stage of the demixing. Light scattering experiments showed the applicability of a scaling rule to the later stage of the growth of phase separation structures. The demixing can be described by a scaling theory proposed by Furukawa.  相似文献   

8.
Unsaturated polyester resin (UP) was prepared from glycolyzed oligomer of poly(ethylene terephthalate) (PET) waste based on diethylene glycol (DEG). New diacrylate and dimethacrylate vinyl ester resins prepared from glycolysis of PET with tetraethylene glycol were blended with UP to study the mechanical characteristics of the cured UP. The vinyl ester resins were used as crosslinking agents for unsaturated polyester resin diluted with styrene, using free‐radical initiator and accelerator. The mechanical properties of the cured UP resins were evaluated. The compressive properties of the cured UP/styrene resins in the presence of different vinyl ester concentrations were evaluated. Increasing the vinyl ester content led to a pronounced improvement in the compression strength. The chemical resistances of the cured resins were evaluated through hot water, solvents, acid, and alkali resistance measurements. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3175–3182, 2007  相似文献   

9.
E El Shafee 《Polymer》2002,43(3):921-927
The miscibility of atactic poly(epichlorohydrin) (aPECH) with poly(vinyl acetate) (PVAc) was examined under two different conditions: (i) in dilute solution, using vicometeric measurements and (ii) as cast films, using differential scanning calorimetric (DSC) and FT-infrared spectroscopy. Phase separation on heating, i.e. lower critical solution temperature (LCST) behavior of the aPECH/PVAc blends was examined by the measurement of transmitted light intensity against temperature. From viscosity measurements, the Krigbaum-Wall polymer-polymer interaction (ΔB) was evaluated. The DSC results show that the aPECH/PVAc blends are miscible as evidenced by the observation of a single composition-dependent glass-transition temperature (Tg) which is well described by the Couchman and Gordon Taylor models. The Flory-Huggins interaction parameter (χ12) calculated from the Tg-method was negative and equal to −0.01, indicating a relatively low interaction strength. The FT-IR results match very well with those of DSC. The cloud point phenomenon is thermodynamically driven but phase separation, once taken place, is diffusion controlled in normal accessible time.  相似文献   

10.
Diffusivities of methyl acetate, methanol and water in poly(vinyl acetate) and fully and partially hydrolyzed poly(vinyl alcohol) have been measured by capillary column inverse gas chromatography and/or gravimetric sorption. Data from the literature have been used when available for comparison. Overall the diffusivities show good consistency in terms of their temperature and concentration dependences. The free‐volume model has been applied to all the data with excellent results. In most cases the dramatic changes in diffusivities with temperature and concentration can be captured using only a few experimental data points and two regression parameters. This demonstrates that the free‐volume theory is a valuable tool for the design of equipment for processing and devolatilization of polymer ? solvent systems. © 2013 Society of Chemical Industry  相似文献   

11.
Three series of self‐synthesized poly(vinyl acetate)‐based low‐profile additives (LPAs), including poly(vinyl acetate), poly(vinyl chloride‐co‐vinyl acetate), and poly(vinyl chloride‐co‐vinyl acetate‐co‐maleic anhydride), with different chemical structures and molecular weights were studied. Their effects on the glass‐transition temperatures and mechanical properties for thermoset polymer blends made from styrene, unsaturated polyester, and LPAs were investigated by an integrated approach of the static phase characteristics, cured sample morphology, reaction kinetics, and property measurements. Based on Takayanagi mechanical models, the factors that control the glass‐transition temperature in each phase region of the cured samples and the mechanical properties are discussed. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 3347–3357, 2003  相似文献   

12.
Daniele C. Bugada  Alfred Rudin   《Polymer》1984,25(12):1759-1766
Commercial poly(vinyl alcohol—acetate) copolymers were characterized by 13C n.m.r. spectroscopy in D2O at 100.6 MHz and by differential scanning calorimetric measurements. N.m.r. spectra can be used for quantitative measurements of tacticity, vinyl alcohol—vinyl acetate composition, non-hydrolyzable branch content and blockiness of vinyl acetate residues. Conventional quality control tests for poly(vinyl alcohols) are recognized to be inadequate to account for all the important properties of these polymers. They have been augmented by thermal analyses for estimations of blockiness of alcohol and acetate residues. The crystal melting points of commercial poly(vinyl alcohols) vary significantly with thermal history of the samples. A standardized thermal procedure was used with observed melting temperatures to estimate either the degree of hydrolysis or the overall blockiness of the polymer. The equations used are based on theory but the procedures used industrially should best be regarded as semi-empirical because equilibrium melting points are not normally measured.  相似文献   

13.
The results of the miscibility between the chemically similar polymers poly(methyl methacrylate) (PMMA) and poly(vinyl acetate) (PVAc) published so far show inconsistent statements concerning miscibility. The problems may be due to differences in molecular weights, tacticity, and preparation methods of the polymers. This investigation was carried out by using either chloroform or tetrahydrofuran (THF) as solvent to prepare the blends, because to our knowledge, nobody has reported any tacticity effect of PMMA on the miscibility with PVAc. Therefore, in this article, different tactic PMMAs were used to mix with PVAc and their miscibility was studied calorimetrically. The results showed little effect of solvent and tacticity. PMMA and PVAc were determined to be almost completely immiscible because of the observation of two Tg's. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 35–39, 2004  相似文献   

14.
High-molecular weight (HMW) poly(vinyl alcohol) (PVA) was prepared via an emulsifier-free emulsion polymerization of vinyl acetate (VAc) using a redox initiation system in low temperatures, and the subsequent saponification with potassium hydroxide in methanol. The effect of the polymerization conditions on the conversion, molecular weight, and branching degree was investigated. PVA with maximum viscosity-average degree of polymerization (DP) of 8270 could be prepared by saponification of poly(vinyl acetate) (PVAc), with DP of 10,660 obtained at temperature of 10°C, monomer concentration of 30%, potassium persulfate molar ratio to monomer of 1/2000, agitation speed of 160 rpm. The conversion was above 90%. From the emulsifier-free emulsion polymerization of VAc in low temperature, PVAc with HMW and high linearity was effectively prepared, which might be useful for the preparation of high-strength and high-modulus PVA fiber. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

15.
Poly(vinyl acetate) PVAc, in nanolatices with 10% polymer content, prepared by microemulsion polymerization was crosslinked by gamma and UV radiation. PVAc colloidal nanoparticles (average diameter, Dp = 58 nm) had Mw = 562,000 g/mol and about 95% conversions. PVAc nanolatices irradiated by gamma rays (1–13 kGy) at room temperature without crosslinking agent and by UV light (30–300 s exposure times) in the presence of divinylbenzene and allyl methacrylate showed crosslinking of up to 96% (high gel content), Dp < 100 nm and did not degrade as shown by FTIR spectroscopy. DSC and TGA characterization of irradiated PVAc samples indicated that Tg temperatures increased from 28°C for PVAc to 42°C and 39°C for UV and gamma rays crosslinked PVAc, respectively, whereas 10% weight losses occurred at 261°C for uncrosslinked PVAc and at 320 and 313°C for UV and gamma rays crosslinked PVAc. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

16.
Fibrous membranes of cellulose acetate (CA), poly(vinyl pyrrolidone) (PVP) and composite membranes of these polymers, were obtained by the electrospinning method. Using systematic method, the optimal conditions for preparation of fibrous membranes were found. Both CA and PVP a concentration of 8% weight was found. The CA was dissolved in a acetone:water solution, volume ratio 80 : 20 and the PVP is dissolved in ethanol:water solution, ratio volume 85 : 15. The flow rate for both polymers was 1.5 mL h?1. The same applied voltage value and the distance between the needle and collection plate were for polymer both, 15 kV and 15 cm respectively. The morphology of fibrous membranes and composite membranes were evaluated by scanning electron microscopy (SEM). The CA fibers showed ribon morphology, while the PVP fibers were cilindric, in both cases with diameters in the micrometer range. Thermogravimetric analysis showed that CA had a complete degradation to 445°C, while the fibrous membranes PVP required a value of temperature for degradation of up to 571°C. Fibrous composite membrane PVP/CA/PVP shows a higher value of strain at break (%), and a lower value of tensile strength (MPa) compared to CA/PVP/CA. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

17.
Akon Higuchi  Toshiro Iijima 《Polymer》1985,26(8):1207-1211
D.s.c. analysis shows that heat absorbed in the heating process of water in poly(vinyl alcohol) membranes is higher than that evolved in the cooling process. A remarkable discrepancy is found between these heats when the water retention, H, of the membrane is lower than 0.5 g H2O/g swollen membrane. The amounts of freezable water in the membranes were estimated by use of the relation observed between the temperature and the enthalpy of the crystallization of super-cooled water. The amounts estimated from the heats absorbed or evolved agree within 2% when H was above 0.6. When H is below 0.5, however, the ratio of these two amounts was greater than 2. This difference is explained by the heat capacity of the water below 250 K increasing anomalously compared with that of bulk water.  相似文献   

18.
Chlorinated poly(vinyl chloride) (CPVC) was solution blended with poly(caprolactone) (PCL), poly(hexamethylene sebacate) (PHMS), poly(α-methyl-α-n-propyl-β-propiolactone) (PMPPL), poly(valerolactone) (PVL), poly(ethylene adipate), poly(ethylene succinate) and poly(β-propiolactone). From calorimetric glass transition temperature (Tg) measurements, it is concluded that CPVC is miscible with polyesters having a CH2/COO ratio larger than three (PCL, PHMS, PMPPL and PVL). The Gordon-Taylor k parameter was also calculated and found equal to 1.0 and 0.56 for PCL/CPVC and PHMS/CPVC blends, respectively. From these values, it is concluded that CPVC gives a stronger interaction with polyesters than poly(vinyl chloride) due to its larger chlorine content.  相似文献   

19.
A major impurity in poly (vinyl alcohol) (PVA) is sodium acetate which remains after its preparation by a base catalyzed hydrolysis of poly(vinyl acetate), and the amount of sodium acetate in commercial PVA samples may reach several percentages. To establish an optimal condition for the removal of sodium acetate, several washing parameters such as washing period, solvent polarity, and temperature were investigated in this study. Nuclear magnetic resonance (NMR) spectroscopy was successfully applied to determine the residual amounts of sodium acetate in the purified poly(vinyl alcohol). The relative integral value for the methyl peak of sodium acetate in PVA was converted to a relative mass value and finally to the sodium acetate content contained in PVA. The results showed that over 95% of sodium acetate in PVA was removed by a washing of PVA with distilled water within 2 h. When methanol was used as a washing solvent, a higher temperature than room temperature was required for an effective removal of sodium acetate. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

20.
The processing and structural effects occurring in a poly(vinyl chloride) (PVC) compound processed in a plastograph, at the time at which the maximum value of the torque (point X on the torque curve) was reached, were studied. The unplasticized PVC compound was processed at various temperatures (150–200°C) with a kneader operating at rotors speeds of 5–40 min?1. The changes in the temperature of the compound due to kneading and its influence on the progress of PVC gelation were analyzed. The gelation progress was studied with differential scanning calorimetry, rheological measurements, and scanning electron microscopy. The maximum value of the torque occurred within the temperature range (170–180°C) of the PVC compound, and it was independent of the adjusted temperature of the mixing chamber. The processing of the PVC compound in the kneader, with high mechanical charges and a comparatively low adjusted temperature (150–170°C), spontaneously generated an effect of self‐heating, resulting in an increasing temperature of the compound. Despite the surprisingly high degree of gelation (80–98%) of the PVC compound processed under these conditions (as determined by differential scanning calorimetry), the scanning electron microscopy observations indicated significant nonhomogeneity of the fracture surface. Consequently, the kneaded PVC compound at point X of the torque curve could be treated as a two‐phase system composed of a liquid, amorphous phase and elements of a grain structure. The transformation of both phases (particularly the quantitative and qualitative changes), which was significantly dependent on the PVC temperature and the shear rate applied by the rotors, determined the state of the melted compound at this point of the torque curve. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号