首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A kinetic study of ethylene/1‐hexene copolymerization is conducted with a supported metallocene catalyst in a gas‐phase reactor. The investigation into the kinetics of ethylene/1‐hexene copolymerization includes the effects of operational parameters such as the reaction temperature, pressure, and comonomer concentration. The large variations in gas‐phase composition using only an initial charge of 1‐hexene are illustrated by experiment. To remedy this, the ability to control the comonomer composition of 1‐hexene online for the entire duration of the reaction is demonstrated. Online perturbation techniques are implemented to determine key kinetic parameters such as the activation energies for propagation and catalyst deactivation. From pressure perturbation results, a reaction rate order close to 1 is obtained for ethylene in the presence of 1‐hexene. Finally, all the parameters obtained from the study are compared to those determined from ethylene–propylene (E–P) copolymerization. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 1096–1119, 2001  相似文献   

2.
A kinetic study of ethylene/1‐hexene (E/1‐H) copolymerization is conducted with a supported bridged metallocene catalyst in a gas phase reactor. The investigation into the kinetics of ethylene/1‐hexene copolymerization includes the effects of operational parameters such as the reaction temperature, pressure, and comonomer concentration. On‐line perturbation techniques are implemented to determine key kinetic parameters such as the activation energies for propagation and catalyst deactivation. A comparison of the kinetic parameters and behavior is made between the bridged and a previously studied unbridged catalyst. Finally, a two‐site model is proposed to explain the observed kinetic behavior with changing reaction temperature and comonomer concentration. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 1451–1459, 2001  相似文献   

3.
A kinetic study of ethylene homopolymerization is conducted with a supported unbridged metallocene catalyst in a slurry reactor. The effects of operational parameters such as the reaction temperature and pressure on kinetics are investigated. The kinetic parameters which have been determined for this particular catalyst from previous gas phase studies are used in a slurry reactor model to predict the polymerization behavior under various reaction conditions. The experimental data compare favorably with the predictions from this model. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 2901–2917, 2001  相似文献   

4.
(Ind)2ZrCl2 catalyst was synthesized and used for copolymerization of ethylene and propylene (EPR) and terpolymerization of ethylene propylene and 5‐ethyldiene‐2‐norbornene (ENB). Methylaluminoxane (MAO) was used as cocatalyst. The activity of the catalyst was higher in copolymerization of ethylene and propylene (EPR) rather than in terpolymerization of ethylene, propylene and diene monomers. The effects of [Al] : [Zr] molar ratio, polymerization temperature, pressure ratio of ethylene/propylene and the ENB concentration on the terpolymerization behavior were studied. The highest productivity of the catalyst was obtained at 60°C, [Al] : [Zr] molar ratios of 750 : 1 and 500 : 1 for copolymerization and terpolymerization, respectively. Increasing the molar ratio of [Al] : [Zr] up to 500 : 1 increased the ethylene and ENB contents of the terpolymers, while beyond this ratio the productivity of the catalyst dropped, leading to lower ethylene and ENB contents. Terpolymerization was carried out batchwise at temperatures from 40 to 70°C. Rate time profiles of the polymerization were a decay type for both copolymerization and terpolymerization. Glass transition temperatures (Tg) of the obtained terpolymers were between ?64 and ?52°C. Glass transition temperatures of both copolymers and terpolymers were decreased with increased ethylene content of the polymers. Dynamic mechanical and rheological properties of the obtained polymers were studied. A compounded EPDM showed good thermal stability with time. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

5.
A nanosized silica particle was used as the support to prepare an Et[Ind]2ZrCl2/MAO catalyst for propylene polymerization of polypropylene. The catalyst and the polymer produced were characterized with nitrogen adsorption, ICP, DSC, SEM, TEM, XRD, solution viscometer, 13C NMR and optical microscopy. The effects of polymerization temperature and [Al]/[Zr] ratio on catalyst activity and polymer melting point were investigated. Under identical reaction conditions, nanosized catalyst exhibited better polymerization activity than the microsized catalyst (e.g., the former had 64% higher activity than the latter at the optimum polymerization temperature (50°C) and [Al]/[Zr] = 570). DSC results indicated that polymer melting point increased with the increase of [Al]/[Zr] ratio and with the decrease of polymerization temperature. XRD results showed that the percentage of γ crystals increased with decreasing [Al]/[Zr] ratio. Electron microscopic results showed that the polymer particle size increased with increasing polymerization temperature. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2573–2580, 2006  相似文献   

6.
This work reports on a correlation between catalyst configuration and copolymer microstructure for ethylene/propylene (E/P) copolymerization using three conventional C2‐symmetric metallocene catalysts, namely, rac‐Et(Ind)2ZrCl2 (EBI), rac‐Me2Si(2‐Me‐4‐Ph‐Ind)2ZrCl2 (SiPh), and rac‐CH2(3‐tBu‐Ind)2ZrCl2 (MBu), with MAO as a common cocatalyst. Copolymerization reactions were conducted in toluene at three different temperatures with varied E/P ratios. Some typically obtained copolymers were characterized in detail using 13C‐NMR spectroscopy, by which triad distribution data were elaborated in a statistical method to determine the reactivity ratios (rE and rP) of the comonomers, which were also obtained by Fineman‐Rose estimation. The production of alternating‐like copolymers from EBI is attributed to the rapid interconversion between two conformation states of the active site, one of which favors the incorporation of propylene but the other one does not. Both SiPh and MBu are structurally more rigid and of larger dihedral angles than EBI; however, SiPh which owns open active site conformation tend to produce random copolymers at all studied temperatures, and for MBu, sterically hindered catalyst, block‐like copolymers were obtained. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

7.
茂金属催化乙丙共聚进展   总被引:2,自引:0,他引:2  
综述了茂金属催化乙丙共聚的研究 ,包括乙丙共聚物的合成、表征、反应机理及工业化进展。着重介绍了茂金属催化乙丙共聚物的结构和性能的研究成果。  相似文献   

8.
负载茂金属催化剂催化乙烯气相聚合   总被引:1,自引:0,他引:1  
研究了负载茂金属催化剂(n-BuNeCp)_2ZrCl_2/SiO_2的乙烯气相聚合行为及其催化聚合产品的性能。三乙基铝加入聚合体系后可降低负载茂金属催化剂的初始活性,有利于聚合过程中的温度控制。气相聚合产品聚乙烯的重均分子量为(1 42~2.28)×10~5,相对分子质量分布为2.6~3.1,熔点在135℃以上,结晶度约为60%,聚乙烯产物颗粒形态以球形为主.堆密度大于0.35 g/cm~3。  相似文献   

9.
Sorption measurements are executed to study the sorption behavior of propylene in a semicrystalline polymer. Decreasing values for the Flory–Huggins interaction parameter with increasing temperature are obtained. Large deviations are found, especially at higher temperatures, compared to data from the literature. Propylene is polymerized in liquid and gaseous propylenes with Me2Si[Ind]2ZrCl2/MAO/SiO2 as the metallocene catalyst. Lower relative reaction rates are found in the gas phase compared to the experiments in the liquid phase. The activation energies from the experiments in both phases are on the same order of magnitude. However, the literature versus experimental sorption data has a large effect on the determined kinetic parameters. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 1193–1206, 2001  相似文献   

10.
Ethylene/1‐hexene copolymerization was carried out with polystyrene‐supported metallocene catalyst. It was found that the kinetic of the copolymerization was strongly influenced by the steric hindrance of carrier. The influences of 1‐hexene concentration in the feed on catalyst productivity and comonomer reactivity were investigated. The microstructure of resultant copolymer was analyzed by 13C NMR. It was found that the different carriers have slight effect on the composite of copolymer. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 1574–1577, 2006  相似文献   

11.
针对茂金属催化剂催化乙烯与1-己烯共聚合难以长周期运行的难题,研究了不同水含量时的聚合状态,探索了载体型茂金属催化剂催化乙烯与1-己烯共聚合体系中水含量对催化剂活性的影响以及水使其失活的机理。结果表明:载体型茂金属催化剂对水很敏感,水可使载体型茂金属催化剂失活。在保持反应压力、反应温度稳定的情况下,通过调整乙烯进料速率,在反应体系中水含量≤1μg/g时,反应状态稳定,且催化剂的活性较高。  相似文献   

12.
Three catalysts obtained by supporting bis(n‐butylcyclopentadienyl)zirconium dichloride/methylaluminoxane on: (1) porous crosslinked poly(2‐hydroxyethylmethacrylate‐co‐styrene‐co‐divinylbenzene) particles (CAT1); (2) swellable crosslinked poly(styrene‐co‐divinylbenzene) particles (CAT2); and (3) by evaporating the catalyst precursors solution to dry powder, CAT3 were used in gas‐phase polymerization of ethylene, and ethylene/1‐hexene in a 2 L semi‐batch reactor at 80 °C and 1.4 MPa. The average polymerization activities of the three catalysts were 12.3–15.5, 4.2–10.1, and 14.3–62.9 ton PE (mol Zr h)?1 respectively. CAT1 and CAT3 produced polyethylenes with a polydispersity range of 2.3–2.7, while that of CAT2 was 3.5–6.4. The supported catalysts produced polyolefin particles with bulk density of 0.36–0.43 g ml?1, and essentially no fines. Ethylene/1‐hexene co‐polymerization (7 mol m?3 initial 1‐hexene concentration in the reactor) increased polymerization activities and produced lower‐molar‐mass co‐polymers. At 21 mol m?3 1‐hexene the polymerization activities decreased, but the relative amount of the low‐molar‐mass co‐polymer for CAT2 increased, leading to higher polydispersity. Copyright © 2006 Society of Chemical Industry  相似文献   

13.
开发了一种适于丙烯气相聚合的催化剂YS-842B.并与国产的同类催化剂进行了比较。结果表明,YS-842B催化剂与国产同类催化剂的组成和颗粒形态相近;聚合动力学行为、氢凋敏感性、共聚合性能相当。采用YS-842B催化剂制备的聚合物具有更窄的粒径分布。  相似文献   

14.
茂金属乙丙弹性体技术进展   总被引:4,自引:1,他引:3  
郝爱 《弹性体》2000,10(3):23-27
论述了茂金属乙丙弹性体的合成、表征、反应机理及工业化进程,着重介绍了茂金属催化体系和茂金属乙丙弹性体的结构和性能。  相似文献   

15.
在实验室小试气相聚合釜中对铬/钒双金属催化剂进行乙烯聚合评价,考察了不同聚合温度和压力时催化剂的性能,研究了不同条件下催化剂的动力学行为,并将其聚合动力学曲线与用工业铬系催化剂的进行了比较。结果表明:随着聚合温度升高,用铬/钒双金属催化剂制备的聚乙烯的相对分子质量减小,熔体流动速率增大,在所研究聚合温度范围内铬/钒双金属催化剂对温度更敏感;随着聚合压力增大,催化剂活性显著提高,聚乙烯相对分子质量增加;聚合动力学曲线与铬系催化剂不同,聚合反应速率先增大再降低最后逐渐达到平稳。  相似文献   

16.
负载钛催化丁二烯-异戊二烯共聚合反应动力学的研究   总被引:4,自引:1,他引:4  
研究了TiCl4 /MgCl2 负载型高效催化剂催化丁二烯 -异戊二烯共聚合的动力学特征 ,并对影响聚合速率的因素进行了考察。首先通过计算排除了扩散控制对反应总聚合速率的影响 ,测定了单体浓度和催化剂浓度的反应级数和表观活化能 (2 2 .8kJ/mol) ,建立的聚合速率方程为 :R =kp·f·[Ti]·[M]。  相似文献   

17.
彭杰  姚薇  杜凯  黄宝琛 《弹性体》2003,13(2):1-4
研究了在10L聚合釜中TiC14/MgC12负载型催化剂催化丁二稀—异戊二烯共聚合的动力学,结果表明,当丁二烯起始投料摩尔百分数为20%时,反应速率对单体浓度和催化剂浓度的反应级数均为一级,表现活化能为24kJ/mol。  相似文献   

18.
A method for quantitative evaluation of kinetic constants in Ziegler–Natta and metallocene olefin polymerizations is presented. The method comprises some fundamental steps, which include the initial design of a statistical experimental plan, the execution of the designed experiments, the development of simple mathematical models to describe the polymerization, and the estimation of kinetic parameters from available rate, gel permeation chromatography, and NMR data. The method is applied to the slurry propylene polymerization, using a conventional first generation Ziegler–Natta catalyst, in a lab‐scale polymerization reactor. It is shown that the proposed method allows the successful interpretation of experimental olefin polymerization data and the quantitative evaluation of kinetic constants, which can be inserted into a process simulator to provide an accurate picture of actual industrial plant behavior. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 79: 2076–2108, 2001  相似文献   

19.
以自制的限定几何构型茂金属催化剂为主催化剂,甲基铝氧烷为助催化剂,对乙烯/1-己烯共聚性能进行研究,考察溶剂、Al与Zr物质的量比、聚合温度、聚合压力和共聚单体浓度等工艺条件对催化剂活性以及聚合物性能的影响。确定乙烯/1-己烯共聚合的工艺条件为:以正庚烷为溶剂,Al与Zr物质的量比为700~1 000,聚合温度(100~120)℃,聚合压力(1.2~2.0)MPa,优选1-己烯浓度为(0.8~1.8)mol·L~(-1)。  相似文献   

20.
A method for quantitative evaluation of kinetic constants in Ziegler–Natta and metallocene olefin polymerizations presented previously (Matos, V.; Mattos Neto, A. G.; Pinto, J. C. J Appl Polym Sci 2001, 79, 2076) is adapted to allow the estimation of kinetic constants for bulk propylene polymerizations by using a conventional fourth‐generation high‐activity Ziegler–Natta catalyst (HAC). In this particular case, reaction rate profiles are not available, so that estimation of kinetic data must rely on average polymer yields. The method comprises some fundamental steps, including the initial design of a statistical experimental plan, the execution of the designed experiments, the development of simple mathematical models to describe the polymerization, and the estimation of kinetic parameters from available yields, gel permeation chromatography (GPC), and nuclear magnetic resonance (NMR) data. It is shown that the proposed method allows the successful interpretation of experimental olefin polymerization data and the quantitative evaluation of kinetic parameters, which can be inserted into a process simulator to provide an accurate picture of actual industrial plant behavior. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 3226–3245, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号